1
JEE Main 2019 (Online) 12th January Morning Slot
+4
-1
The sum of the distinct real values of $$\mu$$, for which the vectors, $$\mu \widehat i + \widehat j + \widehat k,$$   $$\widehat i + \mu \widehat j + \widehat k,$$   $$\widehat i + \widehat j + \mu \widehat k$$  are co-planar, is :
A
2
B
$$-$$1
C
0
D
1
2
JEE Main 2019 (Online) 11th January Evening Slot
+4
-1
Let $$\sqrt 3 \widehat i + \widehat j,$$    $$\widehat i + \sqrt 3 \widehat j$$  and   $$\beta \widehat i + \left( {1 - \beta } \right)\widehat j$$ respectively be the position vectors of the points A, B and C with respect to the origin O. If the distance of C from the bisector of the acute angle between OA and OB is $${3 \over {\sqrt 2 }}$$, then the sum of all possible values of $$\beta$$ is :
A
4
B
1
C
2
D
3
3
JEE Main 2019 (Online) 11th January Morning Slot
+4
-1
Let  $$\overrightarrow a = \widehat i + 2\widehat j + 4\widehat k,$$ $$\overrightarrow b = \widehat i + \lambda \widehat j + 4\widehat k$$ and $$\overrightarrow c = 2\widehat i + 4\widehat j + \left( {{\lambda ^2} - 1} \right)\widehat k$$ be coplanar vectors. Then the non-zero vector $$\overrightarrow a \times \overrightarrow c$$ is :
A
$$- 10\widehat i - 5\widehat j$$
B
$$- 10\widehat i + 5\widehat j$$
C
$$- 14\widehat i + 5\widehat j$$
D
$$- 14\widehat i - 5\widehat j$$
4
JEE Main 2019 (Online) 10th January Evening Slot
+4
-1
If $$\overrightarrow \alpha$$ = $$\left( {\lambda - 2} \right)\overrightarrow a + \overrightarrow b$$  and  $$\overrightarrow \beta = \left( {4\lambda - 2} \right)\overrightarrow a + 3\overrightarrow b$$ be two given vectors $$\overrightarrow a$$ and $$\overrightarrow b$$ are non-collinear. The value of $$\lambda$$ for which vectors $$\overrightarrow \alpha$$ and $$\overrightarrow \beta$$ are collinear, is -
A
4
B
3
C
$$-$$3
D
$$-$$4
JEE Main Subjects
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination