Let $$\mathrm{ABC}$$ be a triangle such that $$\overrightarrow{\mathrm{BC}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{CA}}=\overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{AB}}=\overrightarrow{\mathrm{c}},|\overrightarrow{\mathrm{a}}|=6 \sqrt{2},|\overrightarrow{\mathrm{b}}|=2 \sqrt{3}$$ and $$\vec{b} \cdot \vec{c}=12$$. Consider the statements :

$$(\mathrm{S} 1):|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})+(\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{b}})|-|\vec{c}|=6(2 \sqrt{2}-1)$$

$$(\mathrm{S} 2): \angle \mathrm{ACB}=\cos ^{-1}\left(\sqrt{\frac{2}{3}}\right)$$

Then

Let a vector $$\overrightarrow c $$ be coplanar with the vectors $$\overrightarrow a = - \widehat i + \widehat j + \widehat k$$ and $$\overrightarrow b = 2\widehat i + \widehat j - \widehat k$$. If the vector $$\overrightarrow c $$ also satisfies the conditions $$\overrightarrow c \,.\,\left[ {\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\overrightarrow a \times \overrightarrow b } \right)} \right] = - 42$$ and $$\left( {\overrightarrow c \times \left( {\overrightarrow a - \overrightarrow b } \right)} \right)\,.\,\widehat k = 3$$, then the value of $$|\overrightarrow c {|^2}$$ is equal to :

$$\overrightarrow a = \widehat i + 4\widehat j + 3\widehat k$$

$$\overrightarrow b = 2\widehat i + \alpha \widehat j + 4\widehat k,\,\alpha \in R$$

$$\overrightarrow c = 3\widehat i - 2\widehat j + 5\widehat k$$

If $$\alpha$$ is the smallest positive integer for which $$\overrightarrow a ,\,\overrightarrow b ,\,\overrightarrow c $$ are noncollinear, then the length of the median, in $$\Delta$$ABC, through A is :

Let $$\overrightarrow a = \alpha \widehat i + 3\widehat j - \widehat k$$, $$\overrightarrow b = 3\widehat i - \beta \widehat j + 4\widehat k$$ and $$\overrightarrow c = \widehat i + 2\widehat j - 2\widehat k$$ where $$\alpha ,\,\beta \in R$$, be three vectors. If the projection of $$\overrightarrow a $$ on $$\overrightarrow c $$ is $${{10} \over 3}$$ and $$\overrightarrow b \times \overrightarrow c = - 6\widehat i + 10\widehat j + 7\widehat k$$, then the value of $$\alpha + \beta $$ is equal to: