1
JEE Main 2021 (Online) 16th March Morning Shift
MCQ (Single Correct Answer)
+4
-1
Let a vector $$\alpha \widehat i + \beta \widehat j$$ be obtained by rotating the vector $$\sqrt 3 \widehat i + \widehat j$$ by an angle 45$$^\circ$$ about the origin in counterclockwise direction in the first quadrant. Then the area of triangle having vertices ($$\alpha$$, $$\beta$$), (0, $$\beta$$) and (0, 0) is equal to :
A
$${1 \over {\sqrt 2 }}$$
B
$${1 \over 2}$$
C
1
D
2$${\sqrt 2 }$$
2
JEE Main 2021 (Online) 26th February Evening Shift
MCQ (Single Correct Answer)
+4
-1
If vectors $$\overrightarrow {{a_1}} = x\widehat i - \widehat j + \widehat k$$ and $$\overrightarrow {{a_2}} = \widehat i + y\widehat j + z\widehat k$$ are collinear, then a possible unit vector parallel to the vector $$x\widehat i + y\widehat j + z\widehat k$$ is :
A
$${1 \over {\sqrt 3 }}\left( {\widehat i - \widehat j + \widehat k} \right)$$
B
$${1 \over {\sqrt 2 }}\left( { - \widehat j + \widehat k} \right)$$
C
$${1 \over {\sqrt 2 }}\left( {\widehat i - \widehat j} \right)$$
D
$${1 \over {\sqrt 3 }}\left( {\widehat i + \widehat j - \widehat k} \right)$$
3
JEE Main 2021 (Online) 26th February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If $$\overrightarrow a$$ and $$\overrightarrow b$$ are perpendicular, then
$$\overrightarrow a \times \left( {\overrightarrow a \times \left( {\overrightarrow a \times \left( {\overrightarrow a \times \overrightarrow b } \right)} \right)} \right)$$ is equal to :
A
$${1 \over 2}|\overrightarrow a {|^4}\overrightarrow b$$
B
$$\overrightarrow 0$$
C
$$\overrightarrow a \times \overrightarrow b$$
D
$$|\overrightarrow a {|^4}\overrightarrow b$$
4
JEE Main 2020 (Online) 5th September Morning Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If the volume of a parallelopiped, whose
coterminus edges are given by the
vectors $$\overrightarrow a = \widehat i + \widehat j + n\widehat k$$,
$$\overrightarrow b = 2\widehat i + 4\widehat j - n\widehat k$$ and
$$\overrightarrow c = \widehat i + n\widehat j + 3\widehat k$$ ($$n \ge 0$$), is 158 cu. units, then :
A
n = 7
B
$$\overrightarrow b .\overrightarrow c = 10$$
C
$$\overrightarrow a .\overrightarrow c = 17$$
D
n = 9
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12