If $$\overrightarrow a = \widehat i + 2\widehat k,\overrightarrow b = \widehat i + \widehat j + \widehat k,\overrightarrow c = 7\widehat i - 3\widehat j + 4\widehat k,\overrightarrow r \times \overrightarrow b + \overrightarrow b \times \overrightarrow c = \overrightarrow 0 $$ and $$\overrightarrow r \,.\,\overrightarrow a = 0$$. Then $$\overrightarrow r \,.\,\overrightarrow c $$ is equal to :
Let $$\overrightarrow a = 4\widehat i + 3\widehat j$$ and $$\overrightarrow b = 3\widehat i - 4\widehat j + 5\widehat k$$. If $$\overrightarrow c $$ is a vector such that $$\overrightarrow c .\left( {\overrightarrow a \times \overrightarrow b } \right) + 25 = 0,\overrightarrow c \,.(\widehat i + \widehat j + \widehat k) = 4$$, and projection of $$\overrightarrow c $$ on $$\overrightarrow a $$ is 1, then the projection of $$\overrightarrow c $$ on $$\overrightarrow b $$ equals :
If the vectors $$\overrightarrow a = \lambda \widehat i + \mu \widehat j + 4\widehat k$$, $$\overrightarrow b = - 2\widehat i + 4\widehat j - 2\widehat k$$ and $$\overrightarrow c = 2\widehat i + 3\widehat j + \widehat k$$ are coplanar and the projection of $$\overrightarrow a $$ on the vector $$\overrightarrow b $$ is $$\sqrt {54} $$ units, then the sum of all possible values of $$\lambda + \mu $$ is equal to :
Let $$\overrightarrow a = - \widehat i - \widehat j + \widehat k,\overrightarrow a \,.\,\overrightarrow b = 1$$ and $$\overrightarrow a \times \overrightarrow b = \widehat i - \widehat j$$. Then $$\overrightarrow a - 6\overrightarrow b $$ is equal to :