1
JEE Main 2020 (Online) 3rd September Morning Slot
+4
-1
The lines
$$\overrightarrow r = \left( {\widehat i - \widehat j} \right) + l\left( {2\widehat i + \widehat k} \right)$$ and
$$\overrightarrow r = \left( {2\widehat i - \widehat j} \right) + m\left( {\widehat i + \widehat j + \widehat k} \right)$$
A
do not intersect for any values of $$l$$ and m
B
intersect for all values of $$l$$ and m
C
intersect when $$l$$ = 2 and m = $${1 \over 2}$$
D
intersect when $$l$$ = 1 and m = 2
2
JEE Main 2020 (Online) 8th January Evening Slot
+4
-1
Let $$\overrightarrow a = \widehat i - 2\widehat j + \widehat k$$ and $$\overrightarrow b = \widehat i - \widehat j + \widehat k$$ be two vectors. If $$\overrightarrow c$$ is a vector such that $$\overrightarrow b \times \overrightarrow c = \overrightarrow b \times \overrightarrow a$$ and $$\overrightarrow c .\overrightarrow a = 0$$, then $$\overrightarrow c .\overrightarrow b$$ is equal to
A
$$- {1 \over 2}$$
B
$$- {3 \over 2}$$
C
$${1 \over 2}$$
D
-1
3
JEE Main 2020 (Online) 8th January Morning Slot
+4
-1
Out of Syllabus
Let the volume of a parallelopiped whose coterminous edges are given by

$$\overrightarrow u = \widehat i + \widehat j + \lambda \widehat k$$, $$\overrightarrow v = \widehat i + \widehat j + 3\widehat k$$ and

$$\overrightarrow w = 2\widehat i + \widehat j + \widehat k$$ be 1 cu. unit. If $$\theta$$ be the angle between the edges $$\overrightarrow u$$ and $$\overrightarrow w$$ , then cos$$\theta$$ can be :
A
$${7 \over {6\sqrt 3 }}$$
B
$${7 \over {6\sqrt 6 }}$$
C
$${5 \over 7}$$
D
$${5 \over {3\sqrt 3 }}$$
4
JEE Main 2020 (Online) 7th January Evening Slot
+4
-1
Let $$\overrightarrow a$$ , $$\overrightarrow b$$ and $$\overrightarrow c$$ be three unit vectors such that
$$\overrightarrow a + \vec b + \overrightarrow c = \overrightarrow 0$$. If $$\lambda = \overrightarrow a .\vec b + \vec b.\overrightarrow c + \overrightarrow c .\overrightarrow a$$ and
$$\overrightarrow d = \overrightarrow a \times \vec b + \vec b \times \overrightarrow c + \overrightarrow c \times \overrightarrow a$$, then the ordered pair, $$\left( {\lambda ,\overrightarrow d } \right)$$ is equal to :
A
$$\left( {{3 \over 2},3\overrightarrow a \times \overrightarrow c } \right)$$
B
$$\left( { - {3 \over 2},3\overrightarrow c \times \overrightarrow b } \right)$$
C
$$\left( { - {3 \over 2},3\overrightarrow a \times \overrightarrow b } \right)$$
D
$$\left( {{3 \over 2},3\overrightarrow b \times \overrightarrow c } \right)$$
EXAM MAP
Medical
NEET