1
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$\overrightarrow a \times \overrightarrow b = \overrightarrow b \times \overrightarrow c = \overrightarrow c \times \overrightarrow a $$ then $$\overrightarrow a + \overrightarrow b + \overrightarrow c = $$
A
$$abc$$
B
$$-1$$
C
$$0$$
D
$$2$$
2
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
$$\overrightarrow a \,,\overrightarrow b \,,\overrightarrow c $$ are $$3$$ vectors, such that

$$\overrightarrow a + \overrightarrow b + \overrightarrow c = 0$$ , $$\left| {\overrightarrow a } \right| = 1\,\,\,\left| {\overrightarrow b } \right| = 2,\,\,\,\left| {\overrightarrow c } \right| = 3,$$,

then $${\overrightarrow a .\overrightarrow b + \overrightarrow b .\overrightarrow c + \overrightarrow c .\overrightarrow a }$$ is equal to :
A
$$1$$
B
$$0$$
C
$$-7$$
D
$$7$$
3
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
If $$\overrightarrow a \,\,,\,\,\overrightarrow b \,\,,\,\,\overrightarrow c $$ are vectors such that $$\left[ {\overrightarrow a \,\overrightarrow b \,\overrightarrow c } \right] = 4$$ then $$\left[ {\overrightarrow a \, \times \overrightarrow b \,\,\overrightarrow b \times \,\overrightarrow c \,\,\overrightarrow c \, \times \overrightarrow a } \right] = $$
A
$$16$$
B
$$64$$
C
$$4$$
D
$$8$$
4
AIEEE 2002
MCQ (Single Correct Answer)
+4
-1
Change Language
If the vectors $\overrightarrow{\mathbf{a}}, \overrightarrow{\mathbf{b}}$ and $\overrightarrow{\mathbf{c}}$ from the sides $B C, C A$ and $A B$ respectively of a triangle $A B C$, then :
A
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{b}}=0$
B
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$
C
$\overrightarrow{\mathbf{a}} \cdot \overrightarrow{\mathbf{b}}=\overrightarrow{\mathbf{b}} \cdot \overrightarrow{\mathbf{c}}=\overrightarrow{\mathbf{c}} \cdot \overrightarrow{\mathbf{a}}=0$
D
$\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{a}}+\overrightarrow{\mathbf{a}} \times \overrightarrow{\mathbf{c}}+\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{0}}$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12