1
JEE Main 2025 (Online) 2nd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $\overrightarrow{\mathrm{a}}=2 \hat{i}-3 \hat{j}+\hat{k}, \quad \overrightarrow{\mathrm{~b}}=3 \hat{i}+2 \hat{j}+5 \hat{k}$ and a vector $\overrightarrow{\mathrm{c}}$ be such that $(\vec{a}-\vec{c}) \times \vec{b}=-18 \hat{i}-3 \hat{j}+12 \hat{k}$ and $\vec{a} \cdot \vec{c}=3$. If $\vec{b} \times \vec{c}=\vec{d}$, then $|\vec{a} \cdot \vec{d}|$ is equal to :
A
15
B
18
C
12
D
9
2
JEE Main 2025 (Online) 2nd April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $\overrightarrow{\mathrm{a}}$ is a nonzero vector such that its projections on the vectors $2 \hat{i}-\hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}-2 \hat{k}$ and $\hat{k}$ are equal, then a unit vector along $\overrightarrow{\mathrm{a}}$ is :

A
$\frac{1}{\sqrt{155}}(-7 \hat{i}+9 \hat{j}+5 \hat{k})$
B
$\frac{1}{\sqrt{155}}(-7 \hat{i}+9 \hat{j}-5 \hat{k})$
C
$\frac{1}{\sqrt{155}}(7 \hat{i}+9 \hat{j}-5 \hat{k})$
D
$\frac{1}{\sqrt{155}}(7 \hat{i}+9 \hat{j}+5 \hat{k})$
3
JEE Main 2025 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $ \hat{a} $ be a unit vector perpendicular to the vectors $ \vec{b} = \hat{i} - 2\hat{j} + 3\hat{k} $ and $ \vec{c} = 2\hat{i} + 3\hat{j} - \hat{k} $, and $ \hat{a} $ makes an angle of $ \cos^{-1} \left( -\frac{1}{3} \right) $ with the vector $ \hat{i} + \hat{j} + \hat{k} $. If $ \hat{a} $ makes an angle of $ \frac{\pi}{3} $ with the vector $ \hat{i} + \alpha\hat{j} + \hat{k} $, then the value of $ a $ is:

A

$ \sqrt{3} $

B

$ \sqrt{6} $

C

$ -\sqrt{6} $

D

$ -\sqrt{3} $

4
JEE Main 2025 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$ and $\vec{b}=2 \hat{i}+7 \hat{j}+3 \hat{k}$. Let $\mathrm{L}_1 : \overrightarrow{\mathrm{r}}=(-\hat{i}+2 \hat{j}+\hat{k})+\lambda \vec{a}, \mathrm{\lambda} \in \mathbf{R}$ and $\mathrm{L}_2: \overrightarrow{\mathrm{r}}=(\hat{j}+\hat{k})+\mu \vec{b}, \mu \in \mathrm{R}$ be two lines. If the line $\mathrm{L}_3$ passes through the point of intersection of $\mathrm{L}_1$ and $L_y$ and is parallel to $\vec{a}+\vec{b}$, then $L_3$ passes through the point :

A

$(-1, -1, 1)$

B

$(2, 8, 5)$

C

$(8, 26, 12)$

D

$(5, 17, 4)$

JEE Main Subjects
EXAM MAP