1
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
The vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ are not perpendicular and $$\overrightarrow c $$ and $$\overrightarrow d $$ are two vectors satisfying $$\overrightarrow b \times \overrightarrow c = \overrightarrow b \times \overrightarrow d $$ and $$\overrightarrow a .\overrightarrow d = 0\,\,.$$ Then the vector $$\overrightarrow d $$ is equal to :
A
$$\overrightarrow c + \left( {{{\overrightarrow a .\overrightarrow c } \over {\overrightarrow a .\overrightarrow b }}} \right)\overrightarrow b $$
B
$$\overrightarrow b + \left( {{{\overrightarrow b .\overrightarrow c } \over {\overrightarrow a .\overrightarrow b }}} \right)\overrightarrow c $$
C
$$\overrightarrow c - \left( {{{\overrightarrow a .\overrightarrow c } \over {\overrightarrow a .\overrightarrow b }}} \right)\overrightarrow b $$
D
$$\overrightarrow b - \left( {{{\overrightarrow b .\overrightarrow c } \over {\overrightarrow a .\overrightarrow b }}} \right)\overrightarrow c $$
2
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If $$\overrightarrow a = {1 \over {\sqrt {10} }}\left( {3\widehat i + \widehat k} \right)$$ and $$\overrightarrow b = {1 \over 7}\left( {2\widehat i + 3\widehat j - 6\widehat k} \right),$$ then the value

of $$\left( {2\overrightarrow a - \overrightarrow b } \right)\left[ {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \left( {\overrightarrow a + 2\overrightarrow b } \right)} \right]$$ is :
A
$$-3$$
B
$$5$$
C
$$3$$
D
$$-5$$
3
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a $$, $$\overrightarrow b $$, $$\overrightarrow c $$ be three non-zero vectors which are pairwise non-collinear. If $\overrightarrow a+3 \overrightarrow b$ is collinear with $\overrightarrow c$ and $\overrightarrow b+2 \overrightarrow c$ is collinear with $\overrightarrow a$, then $\overrightarrow a+\overrightarrow b+6 \overrightarrow c$ is :
A
$\overrightarrow a+\overrightarrow c$
B
$\overrightarrow c$
C
$\overrightarrow a$
D
$\overrightarrow 0$
4
AIEEE 2010
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Let $$\overrightarrow a = \widehat j - \widehat k$$ and $$\overrightarrow c = \widehat i - \widehat j - \widehat k.$$ Then the vector $$\overrightarrow b $$ satisfying $$\overrightarrow a \times \overrightarrow b + \overrightarrow c = \overrightarrow 0 $$ and $$\overrightarrow a .\overrightarrow b = 3$$ :
A
$$2\widehat i - \widehat j + 2\widehat k$$
B
$$\widehat i - \widehat j - 2\widehat k$$
C
$$\widehat i + \widehat j - 2\widehat k$$
D
$$-\widehat i +\widehat j - 2\widehat k$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12