1
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
If the vectors $$\overrightarrow {AB} = 3\widehat i + 4\widehat k$$ and $$\overrightarrow {AC} = 5\widehat i - 2\widehat j + 4\widehat k$$ are the sides of a triangle $$ABC,$$ then the length of the median through $$A$$ is :
A
$$\sqrt {18} $$
B
$$\sqrt {72} $$
C
$$\sqrt {33} $$
D
$$\sqrt {45} $$
2
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a $$ and $$\overrightarrow b $$ be two unit vectors. If the vectors $$\,\overrightarrow c = \widehat a + 2\widehat b$$ and $$\overrightarrow d = 5\widehat a - 4\widehat b$$ are perpendicular to each other, then the angle between $$\overrightarrow a $$ and $$\overrightarrow b $$ is :
A
$${\pi \over 6}$$
B
$${\pi \over 2}$$
C
$${\pi \over 3}$$
D
$${\pi \over 4}$$
3
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Let $$ABCD$$ be a parallelogram such that $$\overrightarrow {AB} = \overrightarrow q ,\overrightarrow {AD} = \overrightarrow p $$ and $$\angle BAD$$ be an acute angle. If $$\overrightarrow r $$ is the vector that coincide with the altitude directed from the vertex $$B$$ to the side $$AD,$$ then $$\overrightarrow r $$ is given by :
A
$$\overrightarrow r = 3\overrightarrow q - {{3\left( {\overrightarrow p .\overrightarrow q } \right)} \over {\left( {\overrightarrow p .\overrightarrow p } \right)}}\overrightarrow p $$
B
$$\overrightarrow r = - \overrightarrow q + {{\left( {\overrightarrow p .\overrightarrow q } \right)} \over {\left( {\overrightarrow p .\overrightarrow p } \right)}}\overrightarrow p $$
C
$$\vec r = \vec q - {{\left( {\vec p.\vec q} \right)} \over {\left( {\vec p.\vec p} \right)}}\vec p$$
D
$$\overrightarrow r = - 3\overrightarrow q - {{3\left( {\overrightarrow p .\overrightarrow q } \right)} \over {\left( {\overrightarrow p .\overrightarrow p } \right)}}$$
4
AIEEE 2011
MCQ (Single Correct Answer)
+4
-1
The vectors $$\overrightarrow a $$ and $$\overrightarrow b $$ are not perpendicular and $$\overrightarrow c $$ and $$\overrightarrow d $$ are two vectors satisfying $$\overrightarrow b \times \overrightarrow c = \overrightarrow b \times \overrightarrow d $$ and $$\overrightarrow a .\overrightarrow d = 0\,\,.$$ Then the vector $$\overrightarrow d $$ is equal to :
A
$$\overrightarrow c + \left( {{{\overrightarrow a .\overrightarrow c } \over {\overrightarrow a .\overrightarrow b }}} \right)\overrightarrow b $$
B
$$\overrightarrow b + \left( {{{\overrightarrow b .\overrightarrow c } \over {\overrightarrow a .\overrightarrow b }}} \right)\overrightarrow c $$
C
$$\overrightarrow c - \left( {{{\overrightarrow a .\overrightarrow c } \over {\overrightarrow a .\overrightarrow b }}} \right)\overrightarrow b $$
D
$$\overrightarrow b - \left( {{{\overrightarrow b .\overrightarrow c } \over {\overrightarrow a .\overrightarrow b }}} \right)\overrightarrow c $$
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12