1
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let the position vectors of the points A, B, C and D be $$5 \hat{i}+5 \hat{j}+2 \lambda \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k},-2 \hat{i}+\lambda \hat{j}+4 \hat{k}$$ and $$-\hat{i}+5 \hat{j}+6 \hat{k}$$. Let the set $$S=\{\lambda \in \mathbb{R}$$ : the points A, B, C and D are coplanar $$\}$$.

Then $$\sum_\limits{\lambda \in S}(\lambda+2)^{2}$$ is equal to :

A
$$\frac{37}{2}$$
B
25
C
13
D
41
2
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}-2 \hat{j}-2 \hat{k}$$ and $$\vec{c}=-\hat{i}+4 \hat{j}+3 \hat{k}$$. If $$\vec{d}$$ is a vector perpendicular to both $$\vec{b}$$ and $$\vec{c}$$, and $$\vec{a} \cdot \vec{d}=18$$, then $$|\vec{a} \times \vec{d}|^{2}$$ is equal to :

A
680
B
720
C
760
D
640
3
JEE Main 2023 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$$ and $$\vec{b}=\hat{i}+3 \hat{j}+5 \hat{k}$$ be two vectors. Then which one of the following statements is TRUE ?

A
Projection of $$\vec{a}$$ on $$\vec{b}$$ is $$\frac{-13}{\sqrt{35}}$$ and the direction of the projection vector is opposite to the direction of $$\vec{b}$$.
B
Projection of $$\vec{a}$$ on $$\vec{b}$$ is $$\frac{13}{\sqrt{35}}$$ and the direction of the projection vector is opposite to the direction of $$\vec{b}$$.
C
Projection of $$\vec{a}$$ on $$\vec{b}$$ is $$\frac{13}{\sqrt{35}}$$ and the direction of the projection vector is same as of $$\vec{b}$$.
D
Projection of $$\vec{a}$$ on $$\vec{b}$$ is $$\frac{-13}{\sqrt{35}}$$ and the direction of the projection vector is same as of $$\vec{b}$$.
4
JEE Main 2023 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=2 \hat{i}-7 \hat{j}+5 \hat{k}, \vec{b}=\hat{i}+\hat{k}$$ and $$\vec{c}=\hat{i}+2 \hat{j}-3 \hat{k}$$ be three given vectors. If $$\overrightarrow{\mathrm{r}}$$ is a vector such that $$\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$$ and $$\vec{r} \cdot \vec{b}=0$$, then $$|\vec{r}|$$ is equal to :

A
$$\frac{11}{7}$$
B
$$\frac{11}{5} \sqrt{2}$$
C
$$\frac{\sqrt{914}}{7}$$
D
$$\frac{11}{7} \sqrt{2}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12