Let the vectors $$\vec{a}, \vec{b}, \vec{c}$$ represent three coterminous edges of a parallelopiped of volume V. Then the volume of the parallelopiped, whose coterminous edges are represented by $$\vec{a}, \vec{b}+\vec{c}$$ and $$\vec{a}+2 \vec{b}+3 \vec{c}$$ is equal to :
The sum of all values of $$\alpha$$, for which the points whose position vectors are $$\hat{i}-2 \hat{j}+3 \hat{k}, 2 \hat{i}-3 \hat{j}+4 \hat{k},(\alpha+1) \hat{i}+2 \hat{k}$$ and $$9 \hat{i}+(\alpha-8) \hat{j}+6 \hat{k}$$ are coplanar, is equal to :
Let the position vectors of the points A, B, C and D be
$$5 \hat{i}+5 \hat{j}+2 \lambda \hat{k}, \hat{i}+2 \hat{j}+3 \hat{k},-2 \hat{i}+\lambda \hat{j}+4 \hat{k}$$ and $$-\hat{i}+5 \hat{j}+6 \hat{k}$$. Let the set $$S=\{\lambda \in \mathbb{R}$$ :
the points A, B, C and D are coplanar $$\}$$.
Then $$\sum_\limits{\lambda \in S}(\lambda+2)^{2}$$ is equal to :
Let $$\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}-2 \hat{j}-2 \hat{k}$$ and $$\vec{c}=-\hat{i}+4 \hat{j}+3 \hat{k}$$. If $$\vec{d}$$ is a vector perpendicular to both $$\vec{b}$$ and $$\vec{c}$$, and $$\vec{a} \cdot \vec{d}=18$$, then $$|\vec{a} \times \vec{d}|^{2}$$ is equal to :