1
JEE Main 2023 (Online) 12th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let $$\lambda \in \mathbb{Z}, \vec{a}=\lambda \hat{i}+\hat{j}-\hat{k}$$ and $$\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$$. Let $$\vec{c}$$ be a vector such that $$(\vec{a}+\vec{b}+\vec{c}) \times \vec{c}=\overrightarrow{0}, \vec{a} \cdot \vec{c}=-17$$ and $$\vec{b} \cdot \vec{c}=-20$$. Then $$|\vec{c} \times(\lambda \hat{i}+\hat{j}+\hat{k})|^{2}$$ is equal to :

A
53
B
62
C
49
D
46
2
JEE Main 2023 (Online) 11th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

If four distinct points with position vectors $$\vec{a}, \vec{b}, \vec{c}$$ and $$\vec{d}$$ are coplanar, then $$[\vec{a} \,\,\vec{b} \,\,\vec{c}]$$ is equal to :

A
$$[\vec{d} \,\,\,\,\,\vec{b} \,\,\,\,\,\vec{a}]+[\vec{a} \,\,\,\,\,\vec{c} \,\,\,\,\,\vec{d}]+[\vec{d} \,\,\,\,\,\vec{b} \,\,\,\,\,\vec{c}]$$
B
$$[\vec{b} \,\,\,\,\,\vec{c} \,\,\,\,\,\vec{d}]+[\vec{d} \,\,\,\,\,\vec{a} \,\,\,\,\,\vec{c}]+[\vec{d} \,\,\,\,\,\vec{b} \,\,\,\,\,\vec{a}]$$
C
$$[\vec{a} \,\,\,\,\,\vec{d} \,\,\,\,\,\vec{b}]+[\vec{d} \,\,\,\,\,\vec{c} \,\,\,\,\,\vec{a}]+[\vec{d} \,\,\,\,\,\vec{b} \,\,\,\,\,\vec{c}]$$
D
$$[\vec{d} \,\,\,\,\,\vec{c} \,\,\,\,\,\vec{a}]+[\vec{b} \,\,\,\,\,\vec{d} \,\,\,\,\,\vec{a}]+[\vec{c} \,\,\,\,\,\vec{d} \,\,\,\,\,\vec{b}]$$
3
JEE Main 2023 (Online) 11th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

For any vector $$\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$$, with $$10\left|a_{i}\right|<1, i=1,2,3$$, consider the following statements :

(A): $$\max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\} \leq|\vec{a}|$$

(B) : $$|\vec{a}| \leq 3 \max \left\{\left|a_{1}\right|,\left|a_{2}\right|,\left|a_{3}\right|\right\}$$

A
Only (B) is true
B
Only (A) is true
C
Neither (A) nor (B) is true
D
Both (A) and (B) are true
4
JEE Main 2023 (Online) 11th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}$$ be a non-zero vector parallel to the line of intersection of the two planes described by $$\hat{i}+\hat{j}, \hat{i}+\hat{k}$$ and $$\hat{i}-\hat{j}, \hat{j}-\hat{k}$$. If $$\theta$$ is the angle between the vector $$\vec{a}$$ and the vector $$\vec{b}=2 \hat{i}-2 \hat{j}+\hat{k}$$ and $$\vec{a} \cdot \vec{b}=6$$, then the ordered pair $$(\theta,|\vec{a} \times \vec{b}|)$$ is equal to :

A
$$\left(\frac{\pi}{3}, 3 \sqrt{6}\right)$$
B
$$\left(\frac{\pi}{3}, 6\right)$$
C
$$\left(\frac{\pi}{4}, 3 \sqrt{6}\right)$$
D
$$\left(\frac{\pi}{4}, 6\right)$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12