1
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let $\lambda \in \mathbb{R}, \vec{a}=\lambda \hat{i}+2 \hat{j}-3 \hat{k}, \vec{b}=\hat{i}-\lambda \hat{j}+2 \hat{k}$.

If $((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b})=8 \hat{i}-40 \hat{j}-24 \hat{k}$,

then $|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^2$ is equal to :
A
136
B
140
C
144
D
132
2
JEE Main 2023 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $\vec{a}$ and $\vec{b}$ be two vectors, Let $|\vec{a}|=1,|\vec{b}|=4$ and $\vec{a} \cdot \vec{b}=2$. If $\vec{c}=(2 \vec{a} \times \vec{b})-3 \vec{b}$, then the value of $\vec{b} \cdot \vec{c}$ is :
A
$-48$
B
$-60$
C
$-84$
D
$-24$
3
JEE Main 2023 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are three non-zero vectors and $$\widehat n$$ is a unit vector perpendicular to $$\overrightarrow c $$ such that $$\overrightarrow a = \alpha \overrightarrow b - \widehat n,(\alpha \ne 0)$$ and $$\overrightarrow b \,.\overrightarrow c = 12$$, then $$\left| {\overrightarrow c \times (\overrightarrow a \times \overrightarrow b )} \right|$$ is equal to :

A
15
B
9
C
6
D
12
4
JEE Main 2023 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let a unit vector $$\widehat{O P}$$ make angles $$\alpha, \beta, \gamma$$ with the positive directions of the co-ordinate axes $$\mathrm{OX}$$, $$\mathrm{OY}, \mathrm{OZ}$$ respectively, where $$\beta \in\left(0, \frac{\pi}{2}\right)$$. If $$\widehat{\mathrm{OP}}$$ is perpendicular to the plane through points $$(1,2,3),(2,3,4)$$ and $$(1,5,7)$$, then which one of the following is true?

A
$$\alpha \in\left(\frac{\pi}{2}, \pi\right)$$ and $$\gamma \in\left(\frac{\pi}{2}, \pi\right)$$
B
$$\alpha \in\left(0, \frac{\pi}{2}\right)$$ and $$\gamma \in\left(\frac{\pi}{2}, \pi\right)$$
C
$$\alpha \in\left(\frac{\pi}{2}, \pi\right)$$ and $$\gamma \in\left(0, \frac{\pi}{2}\right)$$
D
$$\alpha \in\left(0, \frac{\pi}{2}\right)$$ and $$\gamma \in\left(0, \frac{\pi}{2}\right)$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12