If $((\vec{a}+\vec{b}) \times(\vec{a} \times \vec{b})) \times(\vec{a}-\vec{b})=8 \hat{i}-40 \hat{j}-24 \hat{k}$,
then $|\lambda(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})|^2$ is equal to :
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ are three non-zero vectors and $$\widehat n$$ is a unit vector perpendicular to $$\overrightarrow c $$ such that $$\overrightarrow a = \alpha \overrightarrow b - \widehat n,(\alpha \ne 0)$$ and $$\overrightarrow b \,.\overrightarrow c = 12$$, then $$\left| {\overrightarrow c \times (\overrightarrow a \times \overrightarrow b )} \right|$$ is equal to :
If $$\overrightarrow a = \widehat i + 2\widehat k,\overrightarrow b = \widehat i + \widehat j + \widehat k,\overrightarrow c = 7\widehat i - 3\widehat j + 4\widehat k,\overrightarrow r \times \overrightarrow b + \overrightarrow b \times \overrightarrow c = \overrightarrow 0 $$ and $$\overrightarrow r \,.\,\overrightarrow a = 0$$. Then $$\overrightarrow r \,.\,\overrightarrow c $$ is equal to