1
JEE Main 2016 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Change Language
In a triangle ABC, right angled at the vertex A, if the position vectors of A, B and C are respectively 3$$\widehat i$$ + $$\widehat j$$ $$-$$ $$\widehat k$$,   $$-$$$$\widehat i$$ + 3$$\widehat j$$ + p$$\widehat k$$ and 5$$\widehat i$$ + q$$\widehat j$$ $$-$$ 4$$\widehat k$$, then the point (p, q) lies on a line :
A
parallel to x-axis.
B
parallel to y-axis.
C
making an acute angle with the positive direction of x-axis.
D
making an obtuse angle with the positive direction of x-axis.
2
JEE Main 2016 (Offline)
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be three unit vectors such that $$\overrightarrow a \times \left( {\overrightarrow b \times \overrightarrow c } \right) = {{\sqrt 3 } \over 2}\left( {\overrightarrow b + \overrightarrow c } \right).$$ If $${\overrightarrow b }$$ is not parallel to $${\overrightarrow c },$$ then the angle between $${\overrightarrow a }$$ and $${\overrightarrow b }$$ is:
A
$${{2\pi } \over 3}$$
B
$${{5\pi } \over 6}$$
C
$${{3\pi } \over 4}$$
D
$${{\pi } \over 2}$$
3
JEE Main 2015 (Offline)
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero vectors such that no two of them are collinear and

$$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a .$$ If $$\theta $$ is the angle between vectors $$\overrightarrow b $$ and $${\overrightarrow c }$$ , then a value of sin $$\theta $$ is :
A
$${2 \over 3}$$
B
$${{ - 2\sqrt 3 } \over 3}$$
C
$${{ 2\sqrt 2 } \over 3}$$
D
$${{ - \sqrt 2 } \over 3}$$
4
JEE Main 2014 (Offline)
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If $$\left[ {\overrightarrow a \times \overrightarrow b \,\,\,\,\overrightarrow b \times \overrightarrow c \,\,\,\,\overrightarrow c \times \overrightarrow a } \right] = \lambda {\left[ {\overrightarrow a\,\,\,\,\,\,\,\, \overrightarrow b \,\,\,\,\,\,\,\,\overrightarrow c } \right]^2}$$ then $$\lambda $$ is equal to :
A
$$0$$
B
$$1$$
C
$$2$$
D
$$3$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12