1
JEE Main 2022 (Online) 29th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\hat{a}$$ and $$\hat{b}$$ be two unit vectors such that the angle between them is $$\frac{\pi}{4}$$. If $$\theta$$ is the angle between the vectors $$(\hat{a}+\hat{b})$$ and $$(\hat{a}+2 \hat{b}+2(\hat{a} \times \hat{b}))$$, then the value of $$164 \,\cos ^{2} \theta$$ is equal to :

A
$$90+27 \sqrt{2}$$
B
$$45+18 \sqrt{2}$$
C
$$90+3 \sqrt{2}$$
D
$$54+90 \sqrt{2}$$
2
JEE Main 2022 (Online) 28th July Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let S be the set of all a $$\in R$$ for which the angle between the vectors $$ \vec{u}=a\left(\log _{e} b\right) \hat{i}-6 \hat{j}+3 \hat{k}$$ and $$\vec{v}=\left(\log _{e} b\right) \hat{i}+2 \hat{j}+2 a\left(\log _{e} b\right) \hat{k}$$, $$(b>1)$$ is acute. Then S is equal to :

A
$$\left(-\infty,-\frac{4}{3}\right)$$
B
$$\Phi $$
C
$$\left(-\frac{4}{3}, 0\right)$$
D
$$\left(\frac{12}{7}, \infty\right)$$
3
JEE Main 2022 (Online) 28th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the vectors $$\vec{a}=(1+t) \hat{i}+(1-t) \hat{j}+\hat{k}, \vec{b}=(1-t) \hat{i}+(1+t) \hat{j}+2 \hat{k}$$ and $$\vec{c}=t \hat{i}-t \hat{j}+\hat{k}, t \in \mathbf{R}$$ be such that for $$\alpha, \beta, \gamma \in \mathbf{R}, \alpha \vec{a}+\beta \vec{b}+\gamma \vec{c}=\overrightarrow{0} \Rightarrow \alpha=\beta=\gamma=0$$. Then, the set of all values of $$t$$ is :

A
a non-empty finite set
B
equal to $$\mathbf{N}$$
C
equal to $$\mathbf{R}-\{0\}$$
D
equal to $$\mathbf{R}$$
4
JEE Main 2022 (Online) 28th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let a vector $$\vec{a}$$ has magnitude 9. Let a vector $$\vec{b}$$ be such that for every $$(x, y) \in \mathbf{R} \times \mathbf{R}-\{(0,0)\}$$, the vector $$(x \vec{a}+y \vec{b})$$ is perpendicular to the vector $$(6 y \vec{a}-18 x \vec{b})$$. Then the value of $$|\vec{a} \times \vec{b}|$$ is equal to :

A
$$9 \sqrt{3}$$
B
$$27 \sqrt{3}$$
C
9
D
81
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12