1
AIEEE 2005
+4
-1
Out of Syllabus
If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c$$ are non coplanar vectors and $$\lambda$$ is a real number then

$$\left[ {\lambda \left( {\overrightarrow a + \overrightarrow b } \right)\,\,\,\,\,\,\,\,{\lambda ^2}\overrightarrow b \,\,\,\,\,\,\,\,\lambda \overrightarrow c } \right] = \left[ {\overrightarrow a \,\,\,\,\,\,\,\,\overrightarrow b + \overrightarrow c \,\,\,\,\,\,\,\,\overrightarrow b } \right]$$ for :
A
exactly one value of $$\lambda$$
B
no value of $$\lambda$$
C
exactly three values of $$\lambda$$
D
exactly two values of $$\lambda$$
2
AIEEE 2005
+4
-1
Out of Syllabus
Let $$\overrightarrow a \,\, = \,\,\widehat i - \widehat k,\,\,\,\,\,\overrightarrow b \,\,\, = \,\,\,x\widehat i + \widehat j\,\,\, + \,\,\,\left( {1 - x} \right)\widehat k$$ and $$\overrightarrow c \,\, = \,\,y\widehat i + x\widehat j + \left( {1 + x - y} \right)\widehat k.$$ Then $$\left[ {\overrightarrow a ,\overrightarrow b ,\overrightarrow c } \right]$$ depends on :
A
only $$y$$
B
only $$x$$
C
both $$x$$ and $$y$$
D
neither $$x$$ nor $$y$$
3
AIEEE 2004
+4
-1
A particle acted on by constant forces $$4\widehat i + \widehat j - 3\widehat k$$ and $$3\widehat i + \widehat j - \widehat k$$ is displaced from the point $$\widehat i + 2\widehat j + 3\widehat k$$ to the point $$\,5\widehat i + 4\widehat j + \widehat k.$$ The total work done by the forces is :
A
$$50$$ units
B
$$20$$ units
C
$$30$$ units
D
$$40$$ units
4
AIEEE 2004
+4
-1
Let $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w$$ be such that $$\left| {\overrightarrow u } \right| = 1,\,\,\,\left| {\overrightarrow v } \right|2,\,\,\,\left| {\overrightarrow w } \right|3.$$ If the projection $${\overrightarrow v }$$ along $${\overrightarrow u }$$ is equal to that of $${\overrightarrow w }$$ along $${\overrightarrow u }$$ and $${\overrightarrow v },$$ $${\overrightarrow w }$$ are perpendicular to each other then $$\left| {\overrightarrow u - \overrightarrow v + \overrightarrow w } \right|$$ equals :
A
$$14$$
B
$${\sqrt {7} }$$
C
$${\sqrt {14} }$$
D
$$2$$
EXAM MAP
Medical
NEET