1
JEE Main 2024 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$$ and $$\vec{c}=x \hat{i}+2 \hat{j}+3 \hat{k}, x \in \mathbb{R}$$. If $$\vec{d}$$ is the unit vector in the direction of $$\vec{b}+\vec{c}$$ such that $$\vec{a} \cdot \vec{d}=1$$, then $$(\vec{a} \times \vec{b}) \cdot \vec{c}$$ is equal to

A
3
B
9
C
11
D
6
2
JEE Main 2024 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let a unit vector which makes an angle of $$60^{\circ}$$ with $$2 \hat{i}+2 \hat{j}-\hat{k}$$ and an angle of $$45^{\circ}$$ with $$\hat{i}-\hat{k}$$ be $$\vec{C}$$. Then $$\vec{C}+\left(-\frac{1}{2} \hat{i}+\frac{1}{3 \sqrt{2}} \hat{j}-\frac{\sqrt{2}}{3} \hat{k}\right)$$ is:

A
$$-\frac{\sqrt{2}}{3} \hat{i}+\frac{\sqrt{2}}{3} \hat{j}+\left(\frac{1}{2}+\frac{2 \sqrt{2}}{3}\right) \hat{k}$$
B
$$\left(\frac{1}{\sqrt{3}}+\frac{1}{2}\right) \hat{i}+\left(\frac{1}{\sqrt{3}}-\frac{1}{3 \sqrt{2}}\right) \hat{j}+\left(\frac{1}{\sqrt{3}}+\frac{\sqrt{2}}{3}\right) \hat{k}$$
C
$$\frac{\sqrt{2}}{3} \hat{i}-\frac{1}{2} \hat{k}$$
D
$$\frac{\sqrt{2}}{3} \hat{i}+\frac{1}{3 \sqrt{2}} \hat{j}-\frac{1}{2} \hat{k}$$
3
JEE Main 2024 (Online) 1st February Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $\overrightarrow{\mathrm{a}}=-5 \hat{i}+\hat{j}-3 \hat{k}, \overrightarrow{\mathrm{b}}=\hat{i}+2 \hat{j}-4 \hat{k}$ and

$\overrightarrow{\mathrm{c}}=(((\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}) \times \hat{i}) \times \hat{i}) \times \hat{i}$. Then $\vec{c} \cdot(-\hat{i}+\hat{j}+\hat{k})$ is equal to :
A
-12
B
-10
C
-13
D
-15
4
JEE Main 2024 (Online) 31st January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=3 \hat{i}+\hat{j}-2 \hat{k}, \vec{b}=4 \hat{i}+\hat{j}+7 \hat{k}$$ and $$\vec{c}=\hat{i}-3 \hat{j}+4 \hat{k}$$ be three vectors. If a vectors $$\vec{p}$$ satisfies $$\vec{p} \times \vec{b}=\vec{c} \times \vec{b}$$ and $$\vec{p} \cdot \vec{a}=0$$, then $$\vec{p} \cdot(\hat{i}-\hat{j}-\hat{k})$$ is equal to

A
24
B
32
C
36
D
28
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12