1
JEE Main 2023 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}, \vec{b}=\hat{i}-2 \hat{j}-2 \hat{k}$$ and $$\vec{c}=-\hat{i}+4 \hat{j}+3 \hat{k}$$. If $$\vec{d}$$ is a vector perpendicular to both $$\vec{b}$$ and $$\vec{c}$$, and $$\vec{a} \cdot \vec{d}=18$$, then $$|\vec{a} \times \vec{d}|^{2}$$ is equal to :

A
680
B
720
C
760
D
640
2
JEE Main 2023 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=5 \hat{i}-\hat{j}-3 \hat{k}$$ and $$\vec{b}=\hat{i}+3 \hat{j}+5 \hat{k}$$ be two vectors. Then which one of the following statements is TRUE ?

A
Projection of $$\vec{a}$$ on $$\vec{b}$$ is $$\frac{-13}{\sqrt{35}}$$ and the direction of the projection vector is opposite to the direction of $$\vec{b}$$.
B
Projection of $$\vec{a}$$ on $$\vec{b}$$ is $$\frac{13}{\sqrt{35}}$$ and the direction of the projection vector is opposite to the direction of $$\vec{b}$$.
C
Projection of $$\vec{a}$$ on $$\vec{b}$$ is $$\frac{13}{\sqrt{35}}$$ and the direction of the projection vector is same as of $$\vec{b}$$.
D
Projection of $$\vec{a}$$ on $$\vec{b}$$ is $$\frac{-13}{\sqrt{35}}$$ and the direction of the projection vector is same as of $$\vec{b}$$.
3
JEE Main 2023 (Online) 1st February Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\vec{a}=2 \hat{i}-7 \hat{j}+5 \hat{k}, \vec{b}=\hat{i}+\hat{k}$$ and $$\vec{c}=\hat{i}+2 \hat{j}-3 \hat{k}$$ be three given vectors. If $$\overrightarrow{\mathrm{r}}$$ is a vector such that $$\vec{r} \times \vec{a}=\vec{c} \times \vec{a}$$ and $$\vec{r} \cdot \vec{b}=0$$, then $$|\vec{r}|$$ is equal to :

A
$$\frac{11}{7}$$
B
$$\frac{11}{5} \sqrt{2}$$
C
$$\frac{\sqrt{914}}{7}$$
D
$$\frac{11}{7} \sqrt{2}$$
4
JEE Main 2023 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=\hat{i}-\hat{j}+2 \hat{k}$ and $\vec{c}=5 \hat{i}-3 \hat{j}+3 \hat{k}$ be three vectors. If $\vec{r}$ is a vector such that, $\vec{r} \times \vec{b}=\vec{c} \times \vec{b}$ and $\vec{r} \cdot \vec{a}=0$, then $25|\vec{r}|^{2}$ is equal to :
A
336
B
449
C
339
D
560
JEE Main Subjects
EXAM MAP