Let the line passing through the points $(-1,2,1)$ and parallel to the line $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z}{4}$ intersect the line $\frac{x+2}{3}=\frac{y-3}{2}=\frac{z-4}{1}$ at the point $P$. Then the distance of $P$ from the point $Q(4,-5,1)$ is
If the square of the shortest distance between the lines $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z+3}{-3}$ and $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{-5}$ is $\frac{m}{n}$, where $m$, $n$ are coprime numbers, then $m+n$ is equal to :
The distance of the line $\frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$ from the point $(1,4,0)$ along the line $\frac{x}{1}=\frac{y-2}{2}=\frac{z+3}{3}$ is :
Let P be the foot of the perpendicular from the point $\mathrm{Q}(10,-3,-1)$ on the line $\frac{x-3}{7}=\frac{y-2}{-1}=\frac{z+1}{-2}$. Then the area of the right angled triangle $P Q R$, where $R$ is the point $(3,-2,1)$, is