Let the plane ax + by + cz = d pass through (2, 3, $$-$$5) and is perpendicular to the planes
2x + y $$-$$ 5z = 10 and 3x + 5y $$-$$ 7z = 12. If a, b, c, d are integers d > 0 and gcd (|a|, |b|, |c|, d) = 1, then the value of a + 7b + c + 20d is equal to :
If two distinct point Q, R lie on the line of intersection of the planes $$ - x + 2y - z = 0$$ and $$3x - 5y + 2z = 0$$ and $$PQ = PR = \sqrt {18} $$ where the point P is (1, $$-$$2, 3), then the area of the triangle PQR is equal to :
The acute angle between the planes P1 and P2, when P1 and P2 are the planes passing through the intersection of the planes $$5x + 8y + 13z - 29 = 0$$ and $$8x - 7y + z - 20 = 0$$ and the points (2, 1, 3) and (0, 1, 2), respectively, is :
Let the plane $$P:\overrightarrow r \,.\,\overrightarrow a = d$$ contain the line of intersection of two planes $$\overrightarrow r \,.\,\left( {\widehat i + 3\widehat j - \widehat k} \right) = 6$$ and $$\overrightarrow r \,.\,\left( { - 6\widehat i + 5\widehat j - \widehat k} \right) = 7$$. If the plane P passes through the point $$\left( {2,3,{1 \over 2}} \right)$$, then the value of $${{|13\overrightarrow a {|^2}} \over {{d^2}}}$$ is equal to :