1
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Let the line $$\,\,\,\,\,$$ $${{x - 2} \over 3} = {{y - 1} \over { - 5}} = {{z + 2} \over 2}$$ lie in the plane $$\,\,\,\,\,$$ $$x + 3y - \alpha z + \beta = 0.$$ Then $$\left( {\alpha ,\beta } \right)$$ equals
A
$$(-6,7)$$
B
$$(5,-15)$$
C
$$(-5,5)$$
D
$$(6, -17)$$
2
AIEEE 2009
MCQ (Single Correct Answer)
+4
-1
The projections of a vector on the three coordinate axis are $$6,-3,2$$ respectively. The direction cosines of the vector are :
A
$${6 \over 5},{{ - 3} \over 5},{2 \over 5}$$
B
$${6 \over 7 },{{ - 3} \over 7},{2 \over 7}$$
C
$${- 6 \over 7 },{{ - 3} \over 7},{2 \over 7}$$
D
$$6, -3, 2$$
3
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
The line passing through the points $$(5,1,a)$$ and $$(3, b, 1)$$ crosses the $$yz$$-plane at the point $$\left( {0,{{17} \over 2}, - {{ - 13} \over 2}} \right)$$ . Then
A
$$a=2,$$ $$b=8$$
B
$$a=4,$$ $$b=6$$
C
$$a=6,$$ $$b=4$$
D
$$a=8,$$ $$b=2$$
4
AIEEE 2008
MCQ (Single Correct Answer)
+4
-1
If the straight lines $$\,\,\,\,\,$$ $$\,\,\,\,\,$$ $${{x - 1} \over k} = {{y - 2} \over 2} = {{z - 3} \over 3}$$ $$\,\,\,\,\,$$ and$$\,\,\,\,\,$$ $${{x - 2} \over 3} = {{y - 3} \over k} = {{z - 1} \over 2}$$ intersects at a point, then the integer $$k$$ is equal to
A
$$-5$$
B
$$5$$
C
$$2$$
D
$$-2$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12