1
JEE Main 2024 (Online) 30th January Evening Shift
+4
-1

Let $$L_1: \vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\lambda(\hat{i}-\hat{j}+2 \hat{k}), \lambda \in \mathbb{R}$$,

$$L_2: \vec{r}=(\hat{j}-\hat{k})+\mu(3 \hat{i}+\hat{j}+p \hat{k}), \mu \in \mathbb{R} \text {, and } L_3: \vec{r}=\delta(\ell \hat{i}+m \hat{j}+n \hat{k}), \delta \in \mathbb{R}$$

be three lines such that $$L_1$$ is perpendicular to $$L_2$$ and $$L_3$$ is perpendicular to both $$L_1$$ and $$L_2$$. Then, the point which lies on $$L_3$$ is

A
$$(1,7,-4)$$
B
$$(1,-7,4)$$
C
$$(-1,7,4)$$
D
$$(-, 1-7,4)$$
2
JEE Main 2024 (Online) 30th January Morning Shift
+4
-1

Let $$(\alpha, \beta, \gamma)$$ be the foot of perpendicular from the point $$(1,2,3)$$ on the line $$\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$$. Then $$19(\alpha+\beta+\gamma)$$ is equal to :

A
99
B
102
C
101
D
100
3
JEE Main 2024 (Online) 30th January Morning Shift
+4
-1

Let $$A(2,3,5)$$ and $$C(-3,4,-2)$$ be opposite vertices of a parallelogram $$A B C D$$. If the diagonal $$\overrightarrow{\mathrm{BD}}=\hat{i}+2 \hat{j}+3 \hat{k}$$, then the area of the parallelogram is equal to :

A
$$\frac{1}{2} \sqrt{410}$$
B
$$\frac{1}{2} \sqrt{306}$$
C
$$\frac{1}{2} \sqrt{586}$$
D
$$\frac{1}{2} \sqrt{474}$$
4
JEE Main 2024 (Online) 29th January Evening Shift
+4
-1

Let $$\mathrm{P}(3,2,3), \mathrm{Q}(4,6,2)$$ and $$\mathrm{R}(7,3,2)$$ be the vertices of $$\triangle \mathrm{PQR}$$. Then, the angle $$\angle \mathrm{QPR}$$ is

A
$$\cos ^{-1}\left(\frac{7}{18}\right)$$
B
$$\frac{\pi}{6}$$
C
$$\cos ^{-1}\left(\frac{1}{18}\right)$$
D
$$\frac{\pi}{3}$$
EXAM MAP
Medical
NEET