1
JEE Main 2022 (Online) 25th July Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let $$\mathrm{P}$$ be the plane containing the straight line $$\frac{x-3}{9}=\frac{y+4}{-1}=\frac{z-7}{-5}$$ and perpendicular to the plane containing the straight lines $$\frac{x}{2}=\frac{y}{3}=\frac{z}{5}$$ and $$\frac{x}{3}=\frac{y}{7}=\frac{z}{8}$$. If $$\mathrm{d}$$ is the distance of $$\mathrm{P}$$ from the point $$(2,-5,11)$$, then $$\mathrm{d}^{2}$$ is equal to :

A
$$\frac{147}{2}$$
B
96
C
$$\frac{32}{3}$$
D
54
2
JEE Main 2022 (Online) 30th June Morning Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

The distance of the point (3, 2, $$-$$1) from the plane $$3x - y + 4z + 1 = 0$$ along the line $${{2 - x} \over 2} = {{y - 3} \over 2} = {{z + 1} \over 1}$$ is equal to :

A
9
B
6
C
3
D
2
3
JEE Main 2022 (Online) 29th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let $${{x - 2} \over 3} = {{y + 1} \over { - 2}} = {{z + 3} \over { - 1}}$$ lie on the plane $$px - qy + z = 5$$, for some p, q $$\in$$ R. The shortest distance of the plane from the origin is :

A
$$\sqrt {{3 \over {109}}} $$
B
$$\sqrt {{5 \over {142}}} $$
C
$${5 \over {\sqrt {71} }}$$
D
$${1 \over {\sqrt {142} }}$$
4
JEE Main 2022 (Online) 29th June Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let Q be the mirror image of the point P(1, 2, 1) with respect to the plane x + 2y + 2z = 16. Let T be a plane passing through the point Q and contains the line $$\overrightarrow r = - \widehat k + \lambda \left( {\widehat i + \widehat j + 2\widehat k} \right),\,\lambda \in R$$. Then, which of the following points lies on T?

A
(2, 1, 0)
B
(1, 2, 1)
C
(1, 2, 2)
D
(1, 3, 2)
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12