1
JEE Main 2024 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$(\alpha, \beta, \gamma)$$ be the mirror image of the point $$(2,3,5)$$ in the line $$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$$. Then, $$2 \alpha+3 \beta+4 \gamma$$ is equal to

A
32
B
31
C
33
D
34
2
JEE Main 2024 (Online) 31st January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The shortest distance, between lines $$L_1$$ and $$L_2$$, where $$L_1: \frac{x-1}{2}=\frac{y+1}{-3}=\frac{z+4}{2}$$ and $$L_2$$ is the line, passing through the points $$\mathrm{A}(-4,4,3), \mathrm{B}(-1,6,3)$$ and perpendicular to the line $$\frac{x-3}{-2}=\frac{y}{3}=\frac{z-1}{1}$$, is

A
$$\frac{141}{\sqrt{221}}$$
B
$$\frac{24}{\sqrt{117}}$$
C
$$\frac{42}{\sqrt{117}}$$
D
$$\frac{121}{\sqrt{221}}$$
3
JEE Main 2024 (Online) 30th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$L_1: \vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\lambda(\hat{i}-\hat{j}+2 \hat{k}), \lambda \in \mathbb{R}$$,

$$L_2: \vec{r}=(\hat{j}-\hat{k})+\mu(3 \hat{i}+\hat{j}+p \hat{k}), \mu \in \mathbb{R} \text {, and } L_3: \vec{r}=\delta(\ell \hat{i}+m \hat{j}+n \hat{k}), \delta \in \mathbb{R}$$

be three lines such that $$L_1$$ is perpendicular to $$L_2$$ and $$L_3$$ is perpendicular to both $$L_1$$ and $$L_2$$. Then, the point which lies on $$L_3$$ is

A
$$(1,7,-4)$$
B
$$(1,-7,4)$$
C
$$(-1,7,4)$$
D
$$(-, 1-7,4)$$
4
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$(\alpha, \beta, \gamma)$$ be the foot of perpendicular from the point $$(1,2,3)$$ on the line $$\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$$. Then $$19(\alpha+\beta+\gamma)$$ is equal to :

A
99
B
102
C
101
D
100
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12