If the foot of the perpendicular drawn from (1, 9, 7) to the line passing through the point (3, 2, 1) and parallel to the planes $$x+2y+z=0$$ and $$3y-z=3$$ is ($$\alpha,\beta,\gamma$$), then $$\alpha+\beta+\gamma$$ is equal to :
Let the plane containing the line of intersection of the planes
P1 : $$x+(\lambda+4)y+z=1$$ and
P2 : $$2x+y+z=2$$
pass through the points (0, 1, 0) and (1, 0, 1). Then the distance of
the point (2$$\lambda,\lambda,-\lambda$$) from the plane P2 is :
The distance of the point (7, $$-$$3, $$-$$4) from the plane passing through the points (2, $$-$$3, 1), ($$-$$1, 1, $$-$$2) and (3, $$-$$4, 2) is :
The distance of the point ($$-1,9,-16$$) from the plane
$$2x+3y-z=5$$ measured parallel to the line
$${{x + 4} \over 3} = {{2 - y} \over 4} = {{z - 3} \over {12}}$$ is :