1
JEE Main 2017 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
If the line, $${{x - 3} \over 1} = {{y + 2} \over { - 1}} = {{z + \lambda } \over { - 2}}$$ lies in the plane, 2x−4y+3z=2, then the shortest distance between this line and the line, $${{x - 1} \over {12}} = {y \over 9} = {z \over 4}$$ is :
A
2
B
1
C
0
D
3
2
JEE Main 2017 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
If a variable plane, at a distance of 3 units from the origin, intersects the coordinate axes at A, B and C, then the locus of the centroid of $$\Delta $$ABC is :
A
$${1 \over {{x^2}}} + {1 \over {{y^2}}} + {1 \over {{z^2}}} = 1$$
B
$${1 \over {{x^2}}} + {1 \over {{y^2}}} + {1 \over {{z^2}}} = 3$$
C
$${1 \over {{x^2}}} + {1 \over {{y^2}}} + {1 \over {{z^2}}} = {1 \over 9}$$
D
$${1 \over {{x^2}}} + {1 \over {{y^2}}} + {1 \over {{z^2}}} = 9$$
3
JEE Main 2017 (Online) 9th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
If x = a, y = b, z = c is a solution of the system of linear equations

x + 8y + 7z = 0

9x + 2y + 3z = 0

x + y + z = 0

such that the point (a, b, c) lies on the plane x + 2y + z = 6, then 2a + b + c equals :
A
$$-$$ 1
B
0
C
1
D
2
4
JEE Main 2017 (Online) 8th April Morning Slot
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language
The line of intersection of the planes $$\overrightarrow r .\left( {3\widehat i - \widehat j + \widehat k} \right) = 1\,\,$$ and
$$\overrightarrow r .\left( {\widehat i + 4\widehat j - 2\widehat k} \right) = 2,$$ is :
A
$${{x - {4 \over 7}} \over { - 2}} = {y \over 7} = {{z - {5 \over 7}} \over {13}}$$
B
$${{x - {4 \over 7}} \over 2} = {y \over { - 7}} = {{z + {5 \over 7}} \over {13}}$$
C
$${{x - {6 \over {13}}} \over 2} = {{y - {5 \over {13}}} \over { - 7}} = {z \over { - 13}}$$
D
$${{x - {6 \over {13}}} \over 2} = {{y - {5 \over {13}}} \over 7} = {z \over { - 13}}$$
JEE Main Subjects
EXAM MAP