1
JEE Main 2021 (Online) 25th February Morning Shift
+4
-1
The equation of the line through the point (0, 1, 2) and perpendicular to the line

$${{x - 1} \over 2} = {{y + 1} \over 3} = {{z - 1} \over { - 2}}$$ is :
A
$${x \over 3} = {{y - 1} \over { - 4}} = {{z - 2} \over 3}$$
B
$${x \over 3} = {{y - 1} \over 4} = {{z - 2} \over { - 3}}$$
C
$${x \over { - 3}} = {{y - 1} \over 4} = {{z - 2} \over 3}$$
D
$${x \over 3} = {{y - 1} \over 4} = {{z - 2} \over 3}$$
2
JEE Main 2021 (Online) 25th February Morning Shift
+4
-1
Let $$\alpha$$ be the angle between the lines whose direction cosines satisfy the equations l + m $$-$$ n = 0 and l2 + m2 $$-$$ n2 = 0. Then the value of sin4$$\alpha$$ + cos4$$\alpha$$ is :
A
$${{3 \over 8}}$$
B
$${{3 \over 4}}$$
C
$${{1 \over 2}}$$
D
$${{5 \over 8}}$$
3
JEE Main 2021 (Online) 24th February Evening Shift
+4
-1
Let a, b$$\in$$R. If the mirror image of the point P(a, 6, 9) with respect to the line

$${{x - 3} \over 7} = {{y - 2} \over 5} = {{z - 1} \over { - 9}}$$ is (20, b, $$-$$a$$-$$9), then | a + b |, is equal to :
A
88
B
90
C
86
D
84
4
JEE Main 2021 (Online) 24th February Evening Shift
+4
-1
Out of Syllabus
The vector equation of the plane passing through the intersection

of the planes $$\overrightarrow r .\left( {\widehat i + \widehat j + \widehat k} \right) = 1$$ and $$\overrightarrow r .\left( {\widehat i - 2\widehat j} \right) = - 2$$, and the point (1, 0, 2) is :
A
$$\overrightarrow r .\left( {\widehat i + 7\widehat j + 3\widehat k} \right) = {7 \over 3}$$
B
$$\overrightarrow r .\left( {\widehat i + 7\widehat j + 3\widehat k} \right) = 7$$
C
$$\overrightarrow r .\left( {3\widehat i + 7\widehat j + 3\widehat k} \right) = 7$$
D
$$\overrightarrow r .\left( {\widehat i - 7\widehat j + 3\widehat k} \right) = {7 \over 3}$$
EXAM MAP
Medical
NEET