If the plane $$2x + y - 5z = 0$$ is rotated about its line of intersection with the plane $$3x - y + 4z - 7 = 0$$ by an angle of $${\pi \over 2}$$, then the plane after the rotation passes through the point :
If the lines $$\overrightarrow r = \left( {\widehat i - \widehat j + \widehat k} \right) + \lambda \left( {3\widehat j - \widehat k} \right)$$ and $$\overrightarrow r = \left( {\alpha \widehat i - \widehat j} \right) + \mu \left( {2\widehat i - 3\widehat k} \right)$$ are co-planar, then the distance of the plane containing these two lines from the point ($$\alpha$$, 0, 0) is :
Let $$\overrightarrow a = \widehat i + \widehat j + 2\widehat k$$, $$\overrightarrow b = 2\widehat i - 3\widehat j + \widehat k$$ and $$\overrightarrow c = \widehat i - \widehat j + \widehat k$$ be three given vectors. Let $$\overrightarrow v $$ be a vector in the plane of $$\overrightarrow a $$ and $$\overrightarrow b $$ whose projection on $$\overrightarrow c $$ is $${2 \over {\sqrt 3 }}$$. If $$\overrightarrow v \,.\,\widehat j = 7$$, then $$\overrightarrow v \,.\,\left( {\widehat i + \widehat k} \right)$$ is equal to :
If the two lines $${l_1}:{{x - 2} \over 3} = {{y + 1} \over {-2}},\,z = 2$$ and $${l_2}:{{x - 1} \over 1} = {{2y + 3} \over \alpha } = {{z + 5} \over 2}$$ are perpendicular, then an angle between the lines l2 and $${l_3}:{{1 - x} \over 3} = {{2y - 1} \over { - 4}} = {z \over 4}$$ is :