Let a line pass through two distinct points $P(-2,-1,3)$ and $Q$, and be parallel to the vector $3 \hat{i}+2 \hat{j}+2 \hat{k}$. If the distance of the point Q from the point $\mathrm{R}(1,3,3)$ is 5 , then the square of the area of $\triangle P Q R$ is equal to :
The perpendicular distance, of the line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+3}{2}$ from the point $\mathrm{P}(2,-10,1)$, is :
Let $\mathrm{L}_1: \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\mathrm{L}_2: \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$ be two lines. Then which of the following points lies on the line of the shortest distance between $\mathrm{L}_1$ and $\mathrm{L}_2$ ?
Consider the line $$\mathrm{L}$$ passing through the points $$(1,2,3)$$ and $$(2,3,5)$$. The distance of the point $$\left(\frac{11}{3}, \frac{11}{3}, \frac{19}{3}\right)$$ from the line $$\mathrm{L}$$ along the line $$\frac{3 x-11}{2}=\frac{3 y-11}{1}=\frac{3 z-19}{2}$$ is equal to