Let the line L pass through $(1,1,1)$ and intersect the lines $\frac{x-1}{2}=\frac{y+1}{3}=\frac{z-1}{4}$ and $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z}{1}$. Then, which of the following points lies on the line $L$ ?
If the shortest distance between the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x}{1}=\frac{y}{\alpha}=\frac{z-5}{1}$ is $\frac{5}{\sqrt{6}}$, then the sum of all possible values of $\alpha$ is
Let A be the point of intersection of the lines $\mathrm{L}_1: \frac{x-7}{1}=\frac{y-5}{0}=\frac{z-3}{-1}$ and $\mathrm{L}_2: \frac{x-1}{3}=\frac{y+3}{4}=\frac{z+7}{5}$. Let B and C be the points on the lines $\mathrm{L}_1$ and $\mathrm{L}_2$ respectively such that $A B=A C=\sqrt{15}$. Then the square of the area of the triangle $A B C$ is :
Let the values of p , for which the shortest distance between the lines $\frac{x+1}{3}=\frac{y}{4}=\frac{z}{5}$ and $\overrightarrow{\mathrm{r}}=(\mathrm{p} \hat{i}+2 \hat{j}+\hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$ is $\frac{1}{\sqrt{6}}$, be $\mathrm{a}, \mathrm{b},(\mathrm{a}<\mathrm{b})$. Then the length of the latus rectum of the ellipse $\frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1$ is :