Let $$O$$ be the origin and the position vectors of $$A$$ and $$B$$ be $$2 \hat{i}+2 \hat{j}+\hat{k}$$ and $$2 \hat{i}+4 \hat{j}+4 \hat{k}$$ respectively. If the internal bisector of $$\angle \mathrm{AOB}$$ meets the line $$\mathrm{AB}$$ at $$\mathrm{C}$$, then the length of $$O C$$ is
Let $$P Q R$$ be a triangle with $$R(-1,4,2)$$. Suppose $$M(2,1,2)$$ is the mid point of $$\mathrm{PQ}$$. The distance of the centroid of $$\triangle \mathrm{PQR}$$ from the point of intersection of the lines $$\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}$$ and $$\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1}$$ is
Let the image of the point $$(1,0,7)$$ in the line $$\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$$ be the point $$(\alpha, \beta, \gamma)$$. Then which one of the following points lies on the line passing through $$(\alpha, \beta, \gamma)$$ and making angles $$\frac{2 \pi}{3}$$ and $$\frac{3 \pi}{4}$$ with $$y$$-axis and $$z$$-axis respectively and an acute angle with $$x$$-axis ?
$\frac{x-6}{1}=\frac{y-4}{0}=\frac{z-8}{3}$ along the line $\frac{x-5}{2}=\frac{y-1}{-3}=\frac{z-5}{6}$, is :