1
JEE Main 2019 (Online) 8th April Evening Slot
+4
-1
Out of Syllabus
The vector equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y+ 4z = 5 which is perpendicular to the plane x – y + z = 0 is :
A
$$\mathop r\limits^ \to \times \left( {\mathop i\limits^ \wedge - \mathop k\limits^ \wedge } \right) - 2 = 0$$
B
$$\mathop r\limits^ \to . \left( {\mathop i\limits^ \wedge + \mathop k\limits^ \wedge } \right) + 2 = 0$$
C
$$\mathop r\limits^ \to . \left( {\mathop i\limits^ \wedge - \mathop k\limits^ \wedge } \right) + 2 = 0$$
D
$$\mathop r\limits^ \to \times \left( {\mathop i\limits^ \wedge - \mathop k\limits^ \wedge } \right) + 2 = 0$$
2
JEE Main 2019 (Online) 8th April Evening Slot
+4
-1
If a point R(4, y, z) lies on the line segment joining the points P(2, –3, 4) and Q(8, 0, 10), then the distance of R from the origin is :
A
$$2 \sqrt {14}$$
B
$$\sqrt {53}$$
C
$$2 \sqrt {21}$$
D
6
3
JEE Main 2019 (Online) 8th April Morning Slot
+4
-1
The length of the perpendicular from the point (2, –1, 4) on the straight line,

$${{x + 3} \over {10}}$$= $${{y - 2} \over {-7}}$$ = $${{z} \over {1}}$$ is :
A
less than 2
B
greater than 4
C
greater than 2 but less than 3
D
greater than 3 but less than 4
4
JEE Main 2019 (Online) 8th April Morning Slot
+4
-1
Out of Syllabus
The magnitude of the projection of the vector $$\mathop {2i}\limits^ \wedge + \mathop {3j}\limits^ \wedge + \mathop k\limits^ \wedge$$ on the vector perpendicular to the plane containing the vectors $$\mathop {i}\limits^ \wedge + \mathop {j}\limits^ \wedge + \mathop k\limits^ \wedge$$ and $$\mathop {i}\limits^ \wedge + \mathop {2j}\limits^ \wedge + \mathop {3k}\limits^ \wedge$$ , is :
A
$${{\sqrt 3 } \over 2}$$
B
$$\sqrt 6$$
C
$$\sqrt {3 \over 2}$$
D
3$$\sqrt 6$$
EXAM MAP
Medical
NEET