Let $\mathrm{L}_1: \frac{x-1}{1}=\frac{y-2}{-1}=\frac{z-1}{2}$ and $\mathrm{L}_2: \frac{x+1}{-1}=\frac{y-2}{2}=\frac{z}{1}$ be two lines.
Let $L_3$ be a line passing through the point $(\alpha, \beta, \gamma)$ and be perpendicular to both $L_1$ and $L_2$. If $L_3$ intersects $\mathrm{L}_1$, then $|5 \alpha-11 \beta-8 \gamma|$ equals :
The square of the distance of the point $ \left( \frac{15}{7}, \frac{32}{7}, 7 \right) $ from the line $ \frac{x + 1}{3} = \frac{y + 3}{5} = \frac{z + 5}{7} $ in the direction of the vector $ \hat{i} + 4\hat{j} + 7\hat{k} $ is:
Let $\mathrm{A}(x, y, z)$ be a point in $x y$-plane, which is equidistant from three points $(0,3,2),(2,0,3)$ and $(0,0,1)$.
Let $\mathrm{B}=(1,4,-1)$ and $\mathrm{C}=(2,0,-2)$. Then among the statements
(S1) : $\triangle \mathrm{ABC}$ is an isosceles right angled triangle, and
(S2) : the area of $\triangle \mathrm{ABC}$ is $\frac{9 \sqrt{2}}{2}$,
If the image of the point $(4,4,3)$ in the line $\frac{x-1}{2}=\frac{y-2}{1}=\frac{z-1}{3}$ is $(\alpha, \beta, \gamma)$, then $\alpha+\beta+\gamma$ is equal to