Let p be the plane passing through the intersection of the planes $$\overrightarrow r \,.\,\left( {\widehat i + 3\widehat j - \widehat k} \right) = 5$$ and $$\overrightarrow r \,.\,\left( {2\widehat i - \widehat j + \widehat k} \right) = 3$$, and the point (2, 1, $$-$$2). Let the position vectors of the points X and Y be $$\widehat i - 2\widehat j + 4\widehat k$$ and $$5\widehat i - \widehat j + 2\widehat k$$ respectively. Then the points :
Let Q be the mirror image of the point P(1, 0, 1) with respect to the plane S : x + y + z = 5. If a line L passing through (1, $$-$$1, $$-$$1), parallel to the line PQ meets the plane S at R, then QR2 is equal to :
If the shortest distance between the lines $${{x - 1} \over 2} = {{y - 2} \over 3} = {{z - 3} \over \lambda }$$ and $${{x - 2} \over 1} = {{y - 4} \over 4} = {{z - 5} \over 5}$$ is $${1 \over {\sqrt 3 }}$$, then the sum of all possible value of $$\lambda$$ is :
Let the points on the plane P be equidistant from the points ($$-$$4, 2, 1) and (2, $$-$$2, 3). Then the acute angle between the plane P and the plane 2x + y + 3z = 1 is :