1
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$(\alpha, \beta, \gamma)$$ be the foot of perpendicular from the point $$(1,2,3)$$ on the line $$\frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}$$. Then $$19(\alpha+\beta+\gamma)$$ is equal to :

A
99
B
102
C
101
D
100
2
JEE Main 2024 (Online) 30th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$A(2,3,5)$$ and $$C(-3,4,-2)$$ be opposite vertices of a parallelogram $$A B C D$$. If the diagonal $$\overrightarrow{\mathrm{BD}}=\hat{i}+2 \hat{j}+3 \hat{k}$$, then the area of the parallelogram is equal to :

A
$$\frac{1}{2} \sqrt{410}$$
B
$$\frac{1}{2} \sqrt{306}$$
C
$$\frac{1}{2} \sqrt{586}$$
D
$$\frac{1}{2} \sqrt{474}$$
3
JEE Main 2024 (Online) 29th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{P}(3,2,3), \mathrm{Q}(4,6,2)$$ and $$\mathrm{R}(7,3,2)$$ be the vertices of $$\triangle \mathrm{PQR}$$. Then, the angle $$\angle \mathrm{QPR}$$ is

A
$$\cos ^{-1}\left(\frac{7}{18}\right)$$
B
$$\frac{\pi}{6}$$
C
$$\cos ^{-1}\left(\frac{1}{18}\right)$$
D
$$\frac{\pi}{3}$$
4
JEE Main 2024 (Online) 29th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$O$$ be the origin and the position vectors of $$A$$ and $$B$$ be $$2 \hat{i}+2 \hat{j}+\hat{k}$$ and $$2 \hat{i}+4 \hat{j}+4 \hat{k}$$ respectively. If the internal bisector of $$\angle \mathrm{AOB}$$ meets the line $$\mathrm{AB}$$ at $$\mathrm{C}$$, then the length of $$O C$$ is

A
$$\frac{3}{2} \sqrt{34}$$
B
$$\frac{2}{3} \sqrt{31}$$
C
$$\frac{2}{3} \sqrt{34}$$
D
$$\frac{3}{2} \sqrt{31}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12