1
JEE Main 2025 (Online) 23rd January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let P be the foot of the perpendicular from the point $\mathrm{Q}(10,-3,-1)$ on the line $\frac{x-3}{7}=\frac{y-2}{-1}=\frac{z+1}{-2}$. Then the area of the right angled triangle $P Q R$, where $R$ is the point $(3,-2,1)$, is

A
 $\sqrt{30}$
B
$9 \sqrt{15}$
C
$3 \sqrt{30}$
D
$8 \sqrt{15}$
2
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let a line pass through two distinct points $P(-2,-1,3)$ and $Q$, and be parallel to the vector $3 \hat{i}+2 \hat{j}+2 \hat{k}$. If the distance of the point Q from the point $\mathrm{R}(1,3,3)$ is 5 , then the square of the area of $\triangle P Q R$ is equal to :

A
148
B
144
C
136
D
140
3
JEE Main 2025 (Online) 22nd January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The perpendicular distance, of the line $\frac{x-1}{2}=\frac{y+2}{-1}=\frac{z+3}{2}$ from the point $\mathrm{P}(2,-10,1)$, is :

A
$6$
B
$4 \sqrt{3}$
C
$3 \sqrt{5}$
D
$5 \sqrt{2}$
4
JEE Main 2025 (Online) 22nd January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\mathrm{L}_1: \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\mathrm{L}_2: \frac{x-2}{3}=\frac{y-4}{4}=\frac{z-5}{5}$ be two lines. Then which of the following points lies on the line of the shortest distance between $\mathrm{L}_1$ and $\mathrm{L}_2$ ?

A
$\left(\frac{14}{3},-3, \frac{22}{3}\right)$
B
$\left(2,3, \frac{1}{3}\right)$
C
$\left(\frac{8}{3},-1, \frac{1}{3}\right)$
D
$\left(-\frac{5}{3},-7,1\right)$
JEE Main Subjects
EXAM MAP