1
JEE Main 2019 (Online) 10th January Morning Slot
+4
-1
Out of Syllabus
The plane passing through the point (4, –1, 2) and parallel to the lines  $${{x + 2} \over 3} = {{y - 2} \over { - 1}} = {{z + 1} \over 2}$$  and  $${{x - 2} \over 1} = {{y - 3} \over 2} = {{z - 4} \over 3}$$ also passes through the point -
A
(1, 1, $$-$$ 1)
B
(1, 1, 1)
C
($$-$$ 1, $$-$$ 1, $$-$$1)
D
($$-$$ 1, $$-$$ 1, 1)
2
JEE Main 2019 (Online) 10th January Morning Slot
+4
-1
Out of Syllabus
Let A be a point on the line $$\overrightarrow r = \left( {1 - 3\mu } \right)\widehat i + \left( {\mu - 1} \right)\widehat j + \left( {2 + 5\mu } \right)\widehat k$$ and B(3, 2, 6) be a point in the space. Then the value of $$\mu$$ for which the vector $$\overrightarrow {AB}$$  is parallel to the plane x $$-$$ 4y + 3z = 1 is -
A
$${1 \over 8}$$
B
$${1 \over 2}$$
C
$${1 \over 4}$$
D
$$-$$ $${1 \over 4}$$
3
JEE Main 2019 (Online) 9th January Evening Slot
+4
-1
Out of Syllabus
The equation of the plane containing the straight line $${x \over 2} = {y \over 3} = {z \over 4}$$ and perpendicular to the plane containing the straight lines $${x \over 3} = {y \over 4} = {z \over 2}$$ and $${x \over 4} = {y \over 2} = {z \over 3}$$ is :
A
x $$-$$ 2y + z = 0
B
3x + 2y $$-$$ 3z = 0
C
x + 2y $$-$$ 2z = 0
D
5x + 2y $$-$$ 4z = 0
4
JEE Main 2019 (Online) 9th January Evening Slot
+4
-1
If the lines x = ay + b, z = cy + d and x = a'z + b', y = c'z + d' are perpendicular, then :
A
ab'  +  bc'  +  1  =  0
B
cc'  +  a   +  a'  =  0
C
bb'  +  cc'  +  1  =  0
D
aa'  +  c  +  c'  =  0
EXAM MAP
Medical
NEET