1
AIEEE 2010
+4
-1
Out of Syllabus
Statement-1 : The point $$A(3, 1, 6)$$ is the mirror image of the point $$B(1, 3, 4)$$ in the plane $$x-y+z=5.$$

Statement-2 : The plane $$x-y+z=5$$ bisects the line segment joining $$A(3, 1, 6)$$ and $$B(1, 3, 4).$$
A
Statement - 1 is true, Statement - 2 is true; Statement - 2 is not a correct explanation for Statement - 1.
B
Statement - 1 is true, Statement - 2 is false.
C
Statement - 1 is false , Statement - 2 is true.
D
Statement - 1 is true, Statement - 2 is true; Statement - 2 is a correct explanation for Statement - 1.
2
AIEEE 2010
+4
-1
A line $$AB$$ in three-dimensional space makes angles $${45^ \circ }$$ and $${120^ \circ }$$ with the positive $$x$$-axis and the positive $$y$$-axis respectively. If $$AB$$ makes an acute angle $$\theta$$ with the positive $$z$$-axis, then $$\theta$$ equals :
A
$${45^ \circ }$$
B
$${60^ \circ }$$
C
$${75^ \circ }$$
D
$${30^ \circ }$$
3
AIEEE 2009
+4
-1
Out of Syllabus
Let the line $$\,\,\,\,\,$$ $${{x - 2} \over 3} = {{y - 1} \over { - 5}} = {{z + 2} \over 2}$$ lie in the plane $$\,\,\,\,\,$$ $$x + 3y - \alpha z + \beta = 0.$$ Then $$\left( {\alpha ,\beta } \right)$$ equals
A
$$(-6,7)$$
B
$$(5,-15)$$
C
$$(-5,5)$$
D
$$(6, -17)$$
4
AIEEE 2009
+4
-1
The projections of a vector on the three coordinate axis are $$6,-3,2$$ respectively. The direction cosines of the vector are :
A
$${6 \over 5},{{ - 3} \over 5},{2 \over 5}$$
B
$${6 \over 7 },{{ - 3} \over 7},{2 \over 7}$$
C
$${- 6 \over 7 },{{ - 3} \over 7},{2 \over 7}$$
D
$$6, -3, 2$$
EXAM MAP
Medical
NEET