1
JEE Main 2024 (Online) 8th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the shortest distance between the lines

$$\begin{array}{ll} L_1: \vec{r}=(2+\lambda) \hat{i}+(1-3 \lambda) \hat{j}+(3+4 \lambda) \hat{k}, & \lambda \in \mathbb{R} \\ L_2: \vec{r}=2(1+\mu) \hat{i}+3(1+\mu) \hat{j}+(5+\mu) \hat{k}, & \mu \in \mathbb{R} \end{array}$$

is $$\frac{m}{\sqrt{n}}$$, where $$\operatorname{gcd}(m, n)=1$$, then the value of $$m+n$$ equals

A
384
B
387
C
390
D
377
2
JEE Main 2024 (Online) 6th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $$\mathrm{P}(\alpha, \beta, \gamma)$$ be the image of the point $$\mathrm{Q}(3,-3,1)$$ in the line $$\frac{x-0}{1}=\frac{y-3}{1}=\frac{z-1}{-1}$$ and $$\mathrm{R}$$ be the point $$(2,5,-1)$$. If the area of the triangle $$\mathrm{PQR}$$ is $$\lambda$$ and $$\lambda^2=14 \mathrm{~K}$$, then $$\mathrm{K}$$ is equal to :

A
18
B
81
C
72
D
36
3
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If $$A(3,1,-1), B\left(\frac{5}{3}, \frac{7}{3}, \frac{1}{3}\right), C(2,2,1)$$ and $$D\left(\frac{10}{3}, \frac{2}{3}, \frac{-1}{3}\right)$$ are the vertices of a quadrilateral $$A B C D$$, then its area is

A
$$\frac{4 \sqrt{2}}{3}$$
B
$$\frac{2 \sqrt{2}}{3}$$
C
$$\frac{5 \sqrt{2}}{3}$$
D
$$2 \sqrt{2}$$
4
JEE Main 2024 (Online) 6th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

The shortest distance between the lines $$\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$$ and $$\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}$$ is

A
$$8 \sqrt{3}$$
B
$$6 \sqrt{3}$$
C
$$5 \sqrt{3}$$
D
$$4 \sqrt{3}$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12