1
JEE Main 2023 (Online) 10th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

If the points $$\mathrm{P}$$ and $$\mathrm{Q}$$ are respectively the circumcenter and the orthocentre of a $$\triangle \mathrm{ABC}$$, then $$\overrightarrow{\mathrm{PA}}+\overrightarrow{\mathrm{PB}}+\overrightarrow{\mathrm{PC}}$$ is equal to :

A
$$\overrightarrow {QP} $$
B
$$\overrightarrow {PQ} $$
C
$$2\overrightarrow {PQ} $$
D
$$2\overrightarrow {QP} $$
2
JEE Main 2023 (Online) 10th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let O be the origin and the position vector of the point P be $$ - \widehat i - 2\widehat j + 3\widehat k$$. If the position vectors of the points A, B and C are $$ - 2\widehat i + \widehat j - 3\widehat k,2\widehat i + 4\widehat j - 2\widehat k$$ and $$ - 4\widehat i + 2\widehat j - \widehat k$$ respectively, then the projection of the vector $$\overrightarrow {OP} $$ on a vector perpendicular to the vectors $$\overrightarrow {AB} $$ and $$\overrightarrow {AC} $$ is :

A
$$\frac{7}{3}$$
B
3
C
$$\frac{10}{3}$$
D
$$\frac{8}{3}$$
3
JEE Main 2023 (Online) 10th April Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

An arc PQ of a circle subtends a right angle at its centre O. The mid point of the arc PQ is R. If $$\overrightarrow {OP} = \overrightarrow u ,\overrightarrow {OR} = \overrightarrow v $$, and $$\overrightarrow {OQ} = \alpha \overrightarrow u + \beta \overrightarrow v $$, then $$\alpha ,{\beta ^2}$$ are the roots of the equation :

A
$${x^2} + x - 2 = 0$$
B
$$3{x^2} + 2x - 1 = 0$$
C
$$3{x^2} - 2x - 1 = 0$$
D
$${x^2} - x - 2 = 0$$
4
JEE Main 2023 (Online) 8th April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Change Language

Let the vectors $$\vec{u}_{1}=\hat{i}+\hat{j}+a \hat{k}, \vec{u}_{2}=\hat{i}+b \hat{j}+\hat{k}$$ and $$\vec{u}_{3}=c \hat{i}+\hat{j}+\hat{k}$$ be coplanar. If the vectors $$\vec{v}_{1}=(a+b) \hat{i}+c \hat{j}+c \hat{k}, \vec{v}_{2}=a \hat{i}+(b+c) \hat{j}+a \hat{k}$$ and $$\vec{v}_{3}=b \hat{i}+b \hat{j}+(c+a) \hat{k}$$ are also coplanar, then $$6(\mathrm{a}+\mathrm{b}+\mathrm{c})$$ is equal to :

A
12
B
6
C
0
D
4
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12