Consider three vectors $$\vec{a}, \vec{b}, \vec{c}$$. Let $$|\vec{a}|=2,|\vec{b}|=3$$ and $$\vec{a}=\vec{b} \times \vec{c}$$. If $$\alpha \in\left[0, \frac{\pi}{3}\right]$$ is the angle between the vectors $$\vec{b}$$ and $$\vec{c}$$, then the minimum value of $$27|\vec{c}-\vec{a}|^2$$ is equal to:
If $$\mathrm{A}(1,-1,2), \mathrm{B}(5,7,-6), \mathrm{C}(3,4,-10)$$ and $$\mathrm{D}(-1,-4,-2)$$ are the vertices of a quadrilateral ABCD, then its area is :
For $$\lambda>0$$, let $$\theta$$ be the angle between the vectors $$\vec{a}=\hat{i}+\lambda \hat{j}-3 \hat{k}$$ and $$\vec{b}=3 \hat{i}-\hat{j}+2 \hat{k}$$. If the vectors $$\vec{a}+\vec{b}$$ and $$\vec{a}-\vec{b}$$ are mutually perpendicular, then the value of (14 cos $$\theta)^2$$ is equal to
Let $$\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$$ and $$\vec{c}=x \hat{i}+2 \hat{j}+3 \hat{k}, x \in \mathbb{R}$$. If $$\vec{d}$$ is the unit vector in the direction of $$\vec{b}+\vec{c}$$ such that $$\vec{a} \cdot \vec{d}=1$$, then $$(\vec{a} \times \vec{b}) \cdot \vec{c}$$ is equal to