1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow u ,\overrightarrow v ,\overrightarrow w $$ be such that $$\left| {\overrightarrow u } \right| = 1,\,\,\,\left| {\overrightarrow v } \right|2,\,\,\,\left| {\overrightarrow w } \right|3.$$ If the projection $${\overrightarrow v }$$ along $${\overrightarrow u }$$ is equal to that of $${\overrightarrow w }$$ along $${\overrightarrow u }$$ and $${\overrightarrow v },$$ $${\overrightarrow w }$$ are perpendicular to each other then $$\left| {\overrightarrow u - \overrightarrow v + \overrightarrow w } \right|$$ equals :
A
$$14$$
B
$${\sqrt {7} }$$
C
$${\sqrt {14} }$$
D
$$2$$
2
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If $${\overrightarrow a ,\overrightarrow b ,\overrightarrow c }$$ are non-coplanar vectors and $$\lambda $$ is a real number, then the vectors $${\overrightarrow a + 2\overrightarrow b + 3\overrightarrow c ,\,\,\lambda \overrightarrow b + 4\overrightarrow c }$$ and $$\left( {2\lambda - 1} \right)\overrightarrow c $$ are non coplanar for :
A
no value of $$\lambda $$
B
all except one value of $$\lambda $$
C
all except two values of $$\lambda $$
D
all values of $$\lambda $$
3
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be three non-zero vectors such that no two of these are collinear. If the vector $$\overrightarrow a + 2\overrightarrow b $$ is collinear with $$\overrightarrow c $$ and $$\overrightarrow b + 3\overrightarrow c $$ is collinear with $$\overrightarrow a $$ ($$\lambda $$ being some non-zero scalar) then $$\overrightarrow a + 2\overrightarrow b + 6\overrightarrow c $$ equals to :
A
$\overrightarrow{0}$
B
$$\lambda \overrightarrow b $$
C
$$\lambda \overrightarrow c $$
D
$$\lambda \overrightarrow a $$
4
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
Let $$\overrightarrow a ,\overrightarrow b $$ and $$\overrightarrow c $$ be non-zero vectors such that $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = {1 \over 3}\left| {\overrightarrow b } \right|\left| {\overrightarrow c } \right|\overrightarrow a \,\,.$$ If $$\theta $$ is the acute angle between the vectors $${\overrightarrow b }$$ and $${\overrightarrow c },$$ then $$sin\theta $$ equals :
A
$${{2\sqrt 2 } \over 3}$$
B
$${{\sqrt 2 } \over 3}$$
C
$${2 \over 3}$$
D
$${1 \over 3}$$
JEE Main Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12