1
JEE Main 2025 (Online) 28th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language
Let $A, B, C$ be three points in xy-plane, whose position vector are given by $\sqrt{3} \hat{i}+\hat{j}, \hat{i}+\sqrt{3} \hat{j}$ and $a \hat{i}+(1-a) \hat{j}$ respectively with respect to the origin O . If the distance of the point C from the line bisecting the angle between the vectors $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$ is $\frac{9}{\sqrt{2}}$, then the sum of all the possible values of $a$ is :
A

2

B

0

C

$ \frac{9}{2} $

D

1

2
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let the position vectors of three vertices of a triangle be $4 \vec{p}+\vec{q}-3 \vec{r},-5 \vec{p}+\vec{q}+2 \vec{r}$ and $2 \vec{p}-\vec{q}+2 \vec{r}$. If the position vectors of the orthocenter and the circumcenter of the triangle are $\frac{\vec{p}+\vec{q}+\vec{r}}{4}$ and $\alpha \vec{p}+\beta \vec{q}+\gamma \vec{r}$ respectively, then $\alpha+2 \beta+5 \gamma$ is equal to :

A
4
B
3
C
1
D
6
3
JEE Main 2025 (Online) 24th January Evening Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\overrightarrow{\mathrm{a}}=3 \hat{i}-\hat{j}+2 \hat{k}, \overrightarrow{\mathrm{~b}}=\overrightarrow{\mathrm{a}} \times(\hat{i}-2 \hat{k})$ and $\overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{b}} \times \hat{k}$. Then the projection of $\overrightarrow{\mathrm{c}}-2 \hat{j}$ on $\vec{a}$ is :

A
$2 \sqrt{7}$
B
$3 \sqrt{7}$
C
$\sqrt{14}$
D
$2 \sqrt{14}$
4
JEE Main 2025 (Online) 24th January Morning Shift
MCQ (Single Correct Answer)
+4
-1
Change Language

Let $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=3 \hat{i}+\hat{j}-\hat{k}$ and $\vec{c}$ be three vectors such that $\vec{c}$ is coplanar with $\vec{a}$ and $\vec{b}$. If the vector $\vec{C}$ is perpendicular to $\vec{b}$ and $\vec{a} \cdot \vec{c}=5$, then $|\vec{c}|$ is equal to

A
$\sqrt{\frac{11}{6}}$
B
$\frac{1}{3 \sqrt{2}}$
C
18
D
16
JEE Main Subjects
EXAM MAP