1
AIEEE 2004
MCQ (Single Correct Answer)
+4
-1
A particle acted on by constant forces $$4\widehat i + \widehat j - 3\widehat k$$ and $$3\widehat i + \widehat j - \widehat k$$ is displaced from the point $$\widehat i + 2\widehat j + 3\widehat k$$ to the point $$\,5\widehat i + 4\widehat j + \widehat k.$$ The total work done by the forces is :
A
$$50$$ units
B
$$20$$ units
C
$$30$$ units
D
$$40$$ units
2
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If $$\overrightarrow u \,,\overrightarrow v $$ and $$\overrightarrow w $$ are three non-coplanar vectors, then $$\,\left( {\overrightarrow u + \overrightarrow v - \overrightarrow w } \right).\left( {\overrightarrow u - \overrightarrow v } \right) \times \left( {\overrightarrow v - \overrightarrow w} \right)$$ equals :
A
$$3\overrightarrow u .\overrightarrow v \times \overrightarrow w $$
B
$$0$$
C
$$\overrightarrow u .\overrightarrow v \times \overrightarrow w $$
D
$$\overrightarrow u .\overrightarrow w \times \overrightarrow v $$
3
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
Consider points $$A, B, C$$ and $$D$$ with position

vectors $$7\widehat i - 4\widehat j + 7\widehat k,\widehat i - 6\widehat j + 10\widehat k, - \widehat i - 3\widehat j + 4\widehat k$$ and $$5\widehat i - \widehat j + 5\widehat k$$ respectively. Then $$ABCD$$ is a :
A
parallelogram but not a rhombus
B
square
C
rhombus
D
None
4
AIEEE 2003
MCQ (Single Correct Answer)
+4
-1
If $$\left| {\matrix{ a & {{a^2}} & {1 + {a^3}} \cr b & {{b^2}} & {1 + {b^3}} \cr c & {{c^2}} & {1 + {c^3}} \cr } } \right| = 0$$ and vectors $$\left( {1,a,{a^2}} \right),\,\,$$

$$\left( {1,b,{b^2}} \right)$$ and $$\left( {1,c,{c^2}} \right)\,$$ are non-coplanar, then the product $$abc$$ equals :
A
$$0$$
B
$$2$$
C
$$-1$$
D
$$1$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12