Let $$A(2,3,5)$$ and $$C(-3,4,-2)$$ be opposite vertices of a parallelogram $$A B C D$$. If the diagonal $$\overrightarrow{\mathrm{BD}}=\hat{i}+2 \hat{j}+3 \hat{k}$$, then the area of the parallelogram is equal to :
Let $$\mathrm{P}(3,2,3), \mathrm{Q}(4,6,2)$$ and $$\mathrm{R}(7,3,2)$$ be the vertices of $$\triangle \mathrm{PQR}$$. Then, the angle $$\angle \mathrm{QPR}$$ is
Let $$O$$ be the origin and the position vectors of $$A$$ and $$B$$ be $$2 \hat{i}+2 \hat{j}+\hat{k}$$ and $$2 \hat{i}+4 \hat{j}+4 \hat{k}$$ respectively. If the internal bisector of $$\angle \mathrm{AOB}$$ meets the line $$\mathrm{AB}$$ at $$\mathrm{C}$$, then the length of $$O C$$ is
Let $$P Q R$$ be a triangle with $$R(-1,4,2)$$. Suppose $$M(2,1,2)$$ is the mid point of $$\mathrm{PQ}$$. The distance of the centroid of $$\triangle \mathrm{PQR}$$ from the point of intersection of the lines $$\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}$$ and $$\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1}$$ is