1
AIEEE 2003
+4
-1
Out of Syllabus
The radius of the circle in which the sphere

$${x^2} + {y^2} + {z^2} + 2x - 2y - 4z - 19 = 0$$ is cut by the plane

$$x+2y+2z+7=0$$ is
A
$$4$$
B
$$1$$
C
$$2$$
D
$$3$$
2
AIEEE 2003
+4
-1
Out of Syllabus
Two systems of rectangular axes have the same origin. If a plane cuts then at distances $$a,b,c$$ and $$a', b', c'$$ from the origin then
A
$${1 \over {{a^2}}} + {1 \over {{b^2}}} + {1 \over {{c^2}}} - {1 \over {a{'^2}}} - {1 \over {b{'^2}}} - {1 \over {c{'^2}}} = 0$$
B
$$\,{1 \over {{a^2}}} + {1 \over {{b^2}}} + {1 \over {{c^2}}} + {1 \over {a{'^2}}} + {1 \over {b{'^2}}} + {1 \over {c{'^2}}} = 0$$
C
$${1 \over {{a^2}}} + {1 \over {{b^2}}} - {1 \over {{c^2}}} + {1 \over {a{'^2}}} - {1 \over {b{'^2}}} - {1 \over {c{'^2}}} = 0$$
D
$${1 \over {{a^2}}} - {1 \over {{b^2}}} - {1 \over {{c^2}}} + {1 \over {a{'^2}}} - {1 \over {b{'^2}}} - {1 \over {c{'^2}}} = 0$$
3
AIEEE 2002
+4
-1
Out of Syllabus
A plane which passes through the point $$(3,2,0)$$ and the line

$${{x - 4} \over 1} = {{y - 7} \over 5} = {{z - 4} \over 4}$$ is :
A
$$x-y+z=1$$
B
$$x+y+z=5$$
C
$$x+2y-z=1$$
D
$$2x-y+z=5$$
4
AIEEE 2002
+4
-1
Out of Syllabus
The $$d.r.$$ of normal to the plane through $$(1, 0, 0), (0, 1, 0)$$ which makes an angle $$\pi /4$$ with plane $$x+y=3$$ are :
A
$$1,\sqrt 2 ,1$$
B
$$1,1,\sqrt 2$$
C
$$1, 1, 2$$
D
$$\sqrt 2 ,1,1$$
EXAM MAP
Medical
NEET