1
JEE Main 2025 (Online) 4th April Evening Shift
MCQ (Single Correct Answer)
+4
-1

Let the values of p , for which the shortest distance between the lines $\frac{x+1}{3}=\frac{y}{4}=\frac{z}{5}$ and $\overrightarrow{\mathrm{r}}=(\mathrm{p} \hat{i}+2 \hat{j}+\hat{k})+\lambda(2 \hat{i}+3 \hat{j}+4 \hat{k})$ is $\frac{1}{\sqrt{6}}$, be $\mathrm{a}, \mathrm{b},(\mathrm{a}<\mathrm{b})$. Then the length of the latus rectum of the ellipse $\frac{x^2}{\mathrm{a}^2}+\frac{y^2}{\mathrm{~b}^2}=1$ is :

A
$\frac{3}{2}$
B
9
C
18
D
$\frac{2}{3}$
2
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let the shortest distance between the lines $\frac{x-3}{3}=\frac{y-\alpha}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-\beta}{4}$ be $3 \sqrt{30}$. Then the positive value of $5 \alpha+\beta$ is

A
42
B
40
C
48
D
46
3
JEE Main 2025 (Online) 4th April Morning Shift
MCQ (Single Correct Answer)
+4
-1

Let $A$ and $B$ be two distinct points on the line $L: \frac{x-6}{3}=\frac{y-7}{2}=\frac{z-7}{-2}$. Both $A$ and $B$ are at a distance $2 \sqrt{17}$ from the foot of perpendicular drawn from the point $(1,2,3)$ on the line $L$. If $O$ is the origin, then $\overrightarrow{O A} \cdot \overrightarrow{O B}$ is equal to

A
49
B
21
C
47
D
62
4
JEE Main 2025 (Online) 3rd April Evening Shift
MCQ (Single Correct Answer)
+4
-1
Each of the angles $\beta$ and $\gamma$ that a given line makes with the positive $y$ - and $z$-axes, respectively, is half of the angle that this line makes with the positive $x$-axes. Then the sum of all possible values of the angle $\beta$ is
A
$\frac{\pi}{2}$
B
$\pi$
C
$\frac{3 \pi}{4}$
D
$\frac{3 \pi}{2}$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12