Let the line $$\mathrm{L}$$ intersect the lines $$x-2=-y=z-1,2(x+1)=2(y-1)=z+1$$ and be parallel to the line $$\frac{x-2}{3}=\frac{y-1}{1}=\frac{z-2}{2}$$. Then which of the following points lies on $$\mathrm{L}$$ ?
If the shortest distance between the lines $$\frac{x-\lambda}{2}=\frac{y-4}{3}=\frac{z-3}{4}$$ and $$\frac{x-2}{4}=\frac{y-4}{6}=\frac{z-7}{8}$$ is $$\frac{13}{\sqrt{29}}$$, then a value of $$\lambda$$ is :
Let $$P(x, y, z)$$ be a point in the first octant, whose projection in the $$x y$$-plane is the point $$Q$$. Let $$O P=\gamma$$; the angle between $$O Q$$ and the positive $$x$$-axis be $$\theta$$; and the angle between $$O P$$ and the positive $$z$$-axis be $$\phi$$, where $$O$$ is the origin. Then the distance of $$P$$ from the $$x$$-axis is
If the shortest distance between the lines
$$\begin{array}{ll} L_1: \vec{r}=(2+\lambda) \hat{i}+(1-3 \lambda) \hat{j}+(3+4 \lambda) \hat{k}, & \lambda \in \mathbb{R} \\ L_2: \vec{r}=2(1+\mu) \hat{i}+3(1+\mu) \hat{j}+(5+\mu) \hat{k}, & \mu \in \mathbb{R} \end{array}$$
is $$\frac{m}{\sqrt{n}}$$, where $$\operatorname{gcd}(m, n)=1$$, then the value of $$m+n$$ equals