Let $$A=\left(\begin{array}{cc}\mathrm{m} & \mathrm{n} \\ \mathrm{p} & \mathrm{q}\end{array}\right), \mathrm{d}=|\mathrm{A}| \neq 0$$ and $$\mathrm{|A-d(A d j A)|=0}$$. Then
The set of all values of $$\mathrm{t\in \mathbb{R}}$$, for which the matrix
$$\left[ {\matrix{
{{e^t}} & {{e^{ - t}}(\sin t - 2\cos t)} & {{e^{ - t}}( - 2\sin t - \cos t)} \cr
{{e^t}} & {{e^{ - t}}(2\sin t + \cos t)} & {{e^{ - t}}(\sin t - 2\cos t)} \cr
{{e^t}} & {{e^{ - t}}\cos t} & {{e^{ - t}}\sin t} \cr
} } \right]$$ is invertible, is :
Let $$\alpha$$ and $$\beta$$ be real numbers. Consider a 3 $$\times$$ 3 matrix A such that $$A^2=3A+\alpha I$$. If $$A^4=21A+\beta I$$, then
Consider the following system of equations
$$\alpha x+2y+z=1$$
$$2\alpha x+3y+z=1$$
$$3x+\alpha y+2z=\beta$$
for some $$\alpha,\beta\in \mathbb{R}$$. Then which of the following is NOT correct.