1
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
The number of values of $$k$$, for which the system of equations : $$$\matrix{ {\left( {k + 1} \right)x + 8y = 4k} \cr {kx + \left( {k + 3} \right)y = 3k - 1} \cr } $$$
has no solution, is
A
infinite
B
1
C
2
D
3
2
JEE Main 2013 (Offline)
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
If $$P = \left[ {\matrix{ 1 & \alpha & 3 \cr 1 & 3 & 3 \cr 2 & 4 & 4 \cr } } \right]$$ is the adjoint of a $$3 \times 3$$ matrix $$A$$ and
$$\left| A \right| = 4,$$ then $$\alpha $$ is equal to :
A
$$4$$
B
$$11$$
C
$$5$$
D
$$0$$
3
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Let $$P$$ and $$Q$$ be $$3 \times 3$$ matrices $$P \ne Q.$$ If $${P^3} = {Q^3}$$ and
$${P^2}Q = {Q^2}P$$ then determinant of $$\left( {{P^2} + {Q^2}} \right)$$ is equal to :
A
$$-2$$
B
$$1$$
C
$$0$$
D
$$-1$$
4
AIEEE 2012
MCQ (Single Correct Answer)
+4
-1
Out of Syllabus
Let $$A = \left( {\matrix{ 1 & 0 & 0 \cr 2 & 1 & 0 \cr 3 & 2 & 1 \cr } } \right)$$. If $${u_1}$$ and $${u_2}$$ are column matrices such
that $$A{u_1} = \left( {\matrix{ 1 \cr 0 \cr 0 \cr } } \right)$$ and $$A{u_2} = \left( {\matrix{ 0 \cr 1 \cr 0 \cr } } \right),$$ then $${u_1} + {u_2}$$ is equal to :
A
$$\left( {\matrix{ -1 \cr 1 \cr 0 \cr } } \right)$$
B
$$\left( {\matrix{ -1 \cr 1 \cr -1 \cr } } \right)$$
C
$$\left( {\matrix{ -1 \cr -1 \cr 0 \cr } } \right)$$
D
$$\left( {\matrix{ 1 \cr -1 \cr -1 \cr } } \right)$$
JEE Main Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12